| 1 | /* |
| 2 | * Copyright (c) 2012-2020 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | #include <mach/host_priv.h> |
| 29 | #include <mach/host_special_ports.h> |
| 30 | #include <mach/mach_types.h> |
| 31 | #include <mach/telemetry_notification_server.h> |
| 32 | |
| 33 | #include <kern/assert.h> |
| 34 | #include <kern/clock.h> |
| 35 | #include <kern/coalition.h> |
| 36 | #include <kern/debug.h> |
| 37 | #include <kern/host.h> |
| 38 | #include <kern/kalloc.h> |
| 39 | #include <kern/kern_types.h> |
| 40 | #include <kern/locks.h> |
| 41 | #include <kern/misc_protos.h> |
| 42 | #include <kern/sched.h> |
| 43 | #include <kern/sched_prim.h> |
| 44 | #include <kern/telemetry.h> |
| 45 | #include <kern/timer_call.h> |
| 46 | #include <kern/policy_internal.h> |
| 47 | #include <kern/kcdata.h> |
| 48 | |
| 49 | #include <pexpert/pexpert.h> |
| 50 | |
| 51 | #include <string.h> |
| 52 | #include <vm/vm_kern.h> |
| 53 | #include <vm/vm_shared_region.h> |
| 54 | |
| 55 | #include <kperf/callstack.h> |
| 56 | #include <kern/backtrace.h> |
| 57 | #include <kern/monotonic.h> |
| 58 | |
| 59 | #include <security/mac_mach_internal.h> |
| 60 | |
| 61 | #include <sys/errno.h> |
| 62 | #include <sys/kdebug.h> |
| 63 | #include <uuid/uuid.h> |
| 64 | #include <kdp/kdp_dyld.h> |
| 65 | |
| 66 | #include <libkern/coreanalytics/coreanalytics.h> |
| 67 | #include <kern/thread_call.h> |
| 68 | |
| 69 | #define TELEMETRY_DEBUG 0 |
| 70 | |
| 71 | struct proc; |
| 72 | extern int proc_pid(struct proc *); |
| 73 | extern char *proc_name_address(void *p); |
| 74 | extern uint64_t proc_uniqueid(void *p); |
| 75 | extern uint64_t proc_was_throttled(void *p); |
| 76 | extern uint64_t proc_did_throttle(void *p); |
| 77 | extern int proc_selfpid(void); |
| 78 | extern boolean_t task_did_exec(task_t task); |
| 79 | extern boolean_t task_is_exec_copy(task_t task); |
| 80 | |
| 81 | struct micro_snapshot_buffer { |
| 82 | vm_offset_t buffer; |
| 83 | uint32_t size; |
| 84 | uint32_t current_position; |
| 85 | uint32_t end_point; |
| 86 | }; |
| 87 | |
| 88 | static bool telemetry_task_ready_for_sample(task_t task); |
| 89 | |
| 90 | static void telemetry_instrumentation_begin( |
| 91 | struct micro_snapshot_buffer *buffer, enum micro_snapshot_flags flags); |
| 92 | |
| 93 | static void telemetry_instrumentation_end(struct micro_snapshot_buffer *buffer); |
| 94 | |
| 95 | static void telemetry_take_sample(thread_t thread, enum micro_snapshot_flags flags); |
| 96 | |
| 97 | #if CONFIG_MACF |
| 98 | static void telemetry_macf_take_sample(thread_t thread, enum micro_snapshot_flags flags); |
| 99 | #endif |
| 100 | |
| 101 | struct telemetry_target { |
| 102 | thread_t thread; |
| 103 | uintptr_t *frames; |
| 104 | size_t frames_count; |
| 105 | bool user64_regs; |
| 106 | uint16_t async_start_index; |
| 107 | enum micro_snapshot_flags microsnapshot_flags; |
| 108 | struct micro_snapshot_buffer *buffer; |
| 109 | lck_mtx_t *buffer_mtx; |
| 110 | }; |
| 111 | |
| 112 | static int telemetry_process_sample( |
| 113 | const struct telemetry_target *target, |
| 114 | bool release_buffer_lock, |
| 115 | uint32_t *out_current_record_start); |
| 116 | |
| 117 | static int telemetry_buffer_gather( |
| 118 | user_addr_t buffer, |
| 119 | uint32_t *length, |
| 120 | bool mark, |
| 121 | struct micro_snapshot_buffer *current_buffer); |
| 122 | |
| 123 | #define TELEMETRY_DEFAULT_SAMPLE_RATE (1) /* 1 sample every 1 second */ |
| 124 | #define TELEMETRY_DEFAULT_BUFFER_SIZE (16*1024) |
| 125 | #define TELEMETRY_MAX_BUFFER_SIZE (64*1024) |
| 126 | |
| 127 | #define TELEMETRY_DEFAULT_NOTIFY_LEEWAY (4*1024) // Userland gets 4k of leeway to collect data after notification |
| 128 | #define TELEMETRY_MAX_UUID_COUNT (128) // Max of 128 non-shared-cache UUIDs to log for symbolication |
| 129 | |
| 130 | uint32_t telemetry_sample_rate = 0; |
| 131 | volatile boolean_t telemetry_needs_record = FALSE; |
| 132 | volatile boolean_t telemetry_needs_timer_arming_record = FALSE; |
| 133 | |
| 134 | /* |
| 135 | * If TRUE, record micro-stackshot samples for all tasks. |
| 136 | * If FALSE, only sample tasks which are marked for telemetry. |
| 137 | */ |
| 138 | bool telemetry_sample_all_tasks = false; |
| 139 | bool telemetry_sample_pmis = false; |
| 140 | uint32_t telemetry_active_tasks = 0; // Number of tasks opted into telemetry |
| 141 | |
| 142 | uint32_t telemetry_timestamp = 0; |
| 143 | |
| 144 | /* |
| 145 | * The telemetry_buffer is responsible |
| 146 | * for timer samples and interrupt samples that are driven by |
| 147 | * compute_averages(). It will notify its client (if one |
| 148 | * exists) when it has enough data to be worth flushing. |
| 149 | */ |
| 150 | struct micro_snapshot_buffer telemetry_buffer = { |
| 151 | .buffer = 0, |
| 152 | .size = 0, |
| 153 | .current_position = 0, |
| 154 | .end_point = 0 |
| 155 | }; |
| 156 | |
| 157 | #if CONFIG_MACF |
| 158 | #define TELEMETRY_MACF_DEFAULT_BUFFER_SIZE (16*1024) |
| 159 | /* |
| 160 | * The MAC framework uses its own telemetry buffer for the purposes of auditing |
| 161 | * security-related work being done by userland threads. |
| 162 | */ |
| 163 | struct micro_snapshot_buffer telemetry_macf_buffer = { |
| 164 | .buffer = 0, |
| 165 | .size = 0, |
| 166 | .current_position = 0, |
| 167 | .end_point = 0 |
| 168 | }; |
| 169 | #endif |
| 170 | |
| 171 | int telemetry_bytes_since_last_mark = -1; // How much data since buf was last marked? |
| 172 | int telemetry_buffer_notify_at = 0; |
| 173 | |
| 174 | LCK_GRP_DECLARE(telemetry_lck_grp, "telemetry group" ); |
| 175 | LCK_MTX_DECLARE(telemetry_mtx, &telemetry_lck_grp); |
| 176 | LCK_MTX_DECLARE(telemetry_pmi_mtx, &telemetry_lck_grp); |
| 177 | LCK_MTX_DECLARE(telemetry_macf_mtx, &telemetry_lck_grp); |
| 178 | |
| 179 | #define TELEMETRY_LOCK() do { lck_mtx_lock(&telemetry_mtx); } while (0) |
| 180 | #define TELEMETRY_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&telemetry_mtx) |
| 181 | #define TELEMETRY_UNLOCK() do { lck_mtx_unlock(&telemetry_mtx); } while (0) |
| 182 | |
| 183 | #define TELEMETRY_PMI_LOCK() do { lck_mtx_lock(&telemetry_pmi_mtx); } while (0) |
| 184 | #define TELEMETRY_PMI_UNLOCK() do { lck_mtx_unlock(&telemetry_pmi_mtx); } while (0) |
| 185 | |
| 186 | #define TELEMETRY_MACF_LOCK() do { lck_mtx_lock(&telemetry_macf_mtx); } while (0) |
| 187 | #define TELEMETRY_MACF_UNLOCK() do { lck_mtx_unlock(&telemetry_macf_mtx); } while (0) |
| 188 | |
| 189 | #define TELEMETRY_BT_FRAMES (5) |
| 190 | |
| 191 | /* |
| 192 | * Telemetry reporting is unsafe in interrupt context, since the CA framework |
| 193 | * relies on being able to successfully zalloc some memory for the event. |
| 194 | * Therefore we maintain a small buffer that is then flushed by an helper thread. |
| 195 | */ |
| 196 | #define CA_ENTRIES_SIZE (5) |
| 197 | |
| 198 | struct telemetry_ca_entry { |
| 199 | uint32_t type; |
| 200 | uint16_t code; |
| 201 | uint32_t num_frames; |
| 202 | uintptr_t faulting_address; |
| 203 | uintptr_t frames[TELEMETRY_BT_FRAMES]; |
| 204 | }; |
| 205 | |
| 206 | LCK_GRP_DECLARE(ca_entries_lock_grp, "ca_entries_lck" ); |
| 207 | LCK_SPIN_DECLARE(ca_entries_lck, &ca_entries_lock_grp); |
| 208 | |
| 209 | static struct telemetry_ca_entry ca_entries[CA_ENTRIES_SIZE]; |
| 210 | static uint8_t ca_entries_index = 0; |
| 211 | static struct thread_call *telemetry_ca_send_callout; |
| 212 | |
| 213 | CA_EVENT(kernel_breakpoint_event, |
| 214 | CA_INT, brk_type, |
| 215 | CA_INT, brk_code, |
| 216 | CA_INT, faulting_address, |
| 217 | CA_STATIC_STRING(CA_UBSANBUF_LEN), backtrace, |
| 218 | CA_STATIC_STRING(CA_UUID_LEN), uuid); |
| 219 | |
| 220 | /* Rate-limit telemetry on last seen faulting address */ |
| 221 | static uintptr_t PERCPU_DATA(brk_telemetry_cache_address); |
| 222 | /* Get out from the brk handler if the CPU is already servicing one */ |
| 223 | static bool PERCPU_DATA(brk_telemetry_in_handler); |
| 224 | |
| 225 | static void telemetry_flush_ca_events(thread_call_param_t, thread_call_param_t); |
| 226 | |
| 227 | void |
| 228 | telemetry_init(void) |
| 229 | { |
| 230 | kern_return_t ret; |
| 231 | uint32_t telemetry_notification_leeway; |
| 232 | |
| 233 | if (!PE_parse_boot_argn(arg_string: "telemetry_buffer_size" , |
| 234 | arg_ptr: &telemetry_buffer.size, max_arg: sizeof(telemetry_buffer.size))) { |
| 235 | telemetry_buffer.size = TELEMETRY_DEFAULT_BUFFER_SIZE; |
| 236 | } |
| 237 | |
| 238 | if (telemetry_buffer.size > TELEMETRY_MAX_BUFFER_SIZE) { |
| 239 | telemetry_buffer.size = TELEMETRY_MAX_BUFFER_SIZE; |
| 240 | } |
| 241 | |
| 242 | ret = kmem_alloc(map: kernel_map, addrp: &telemetry_buffer.buffer, size: telemetry_buffer.size, |
| 243 | flags: KMA_DATA | KMA_ZERO | KMA_PERMANENT, VM_KERN_MEMORY_DIAG); |
| 244 | if (ret != KERN_SUCCESS) { |
| 245 | kprintf(fmt: "Telemetry: Allocation failed: %d\n" , ret); |
| 246 | return; |
| 247 | } |
| 248 | |
| 249 | if (!PE_parse_boot_argn(arg_string: "telemetry_notification_leeway" , |
| 250 | arg_ptr: &telemetry_notification_leeway, max_arg: sizeof(telemetry_notification_leeway))) { |
| 251 | /* |
| 252 | * By default, notify the user to collect the buffer when there is this much space left in the buffer. |
| 253 | */ |
| 254 | telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY; |
| 255 | } |
| 256 | if (telemetry_notification_leeway >= telemetry_buffer.size) { |
| 257 | printf(format: "telemetry: nonsensical telemetry_notification_leeway boot-arg %d changed to %d\n" , |
| 258 | telemetry_notification_leeway, TELEMETRY_DEFAULT_NOTIFY_LEEWAY); |
| 259 | telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY; |
| 260 | } |
| 261 | telemetry_buffer_notify_at = telemetry_buffer.size - telemetry_notification_leeway; |
| 262 | |
| 263 | if (!PE_parse_boot_argn(arg_string: "telemetry_sample_rate" , |
| 264 | arg_ptr: &telemetry_sample_rate, max_arg: sizeof(telemetry_sample_rate))) { |
| 265 | telemetry_sample_rate = TELEMETRY_DEFAULT_SAMPLE_RATE; |
| 266 | } |
| 267 | |
| 268 | telemetry_ca_send_callout = thread_call_allocate_with_options( |
| 269 | func: telemetry_flush_ca_events, NULL, pri: THREAD_CALL_PRIORITY_KERNEL, |
| 270 | options: THREAD_CALL_OPTIONS_ONCE); |
| 271 | |
| 272 | assert(telemetry_ca_send_callout != NULL); |
| 273 | /* |
| 274 | * To enable telemetry for all tasks, include "telemetry_sample_all_tasks=1" in boot-args. |
| 275 | */ |
| 276 | if (!PE_parse_boot_argn(arg_string: "telemetry_sample_all_tasks" , |
| 277 | arg_ptr: &telemetry_sample_all_tasks, max_arg: sizeof(telemetry_sample_all_tasks))) { |
| 278 | #if !defined(XNU_TARGET_OS_OSX) && !(DEVELOPMENT || DEBUG) |
| 279 | telemetry_sample_all_tasks = false; |
| 280 | #else |
| 281 | telemetry_sample_all_tasks = true; |
| 282 | #endif /* !defined(XNU_TARGET_OS_OSX) && !(DEVELOPMENT || DEBUG) */ |
| 283 | } |
| 284 | |
| 285 | kprintf(fmt: "Telemetry: Sampling %stasks once per %u second%s\n" , |
| 286 | (telemetry_sample_all_tasks) ? "all " : "" , |
| 287 | telemetry_sample_rate, telemetry_sample_rate == 1 ? "" : "s" ); |
| 288 | } |
| 289 | |
| 290 | /* |
| 291 | * Enable or disable global microstackshots (ie telemetry_sample_all_tasks). |
| 292 | * |
| 293 | * enable_disable == 1: turn it on |
| 294 | * enable_disable == 0: turn it off |
| 295 | */ |
| 296 | void |
| 297 | telemetry_global_ctl(int enable_disable) |
| 298 | { |
| 299 | if (enable_disable == 1) { |
| 300 | telemetry_sample_all_tasks = true; |
| 301 | } else { |
| 302 | telemetry_sample_all_tasks = false; |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | /* |
| 307 | * Opt the given task into or out of the telemetry stream. |
| 308 | * |
| 309 | * Supported reasons (callers may use any or all of): |
| 310 | * TF_CPUMON_WARNING |
| 311 | * TF_WAKEMON_WARNING |
| 312 | * |
| 313 | * enable_disable == 1: turn it on |
| 314 | * enable_disable == 0: turn it off |
| 315 | */ |
| 316 | void |
| 317 | telemetry_task_ctl(task_t task, uint32_t reasons, int enable_disable) |
| 318 | { |
| 319 | task_lock(task); |
| 320 | telemetry_task_ctl_locked(task, reason: reasons, enable_disable); |
| 321 | task_unlock(task); |
| 322 | } |
| 323 | |
| 324 | void |
| 325 | telemetry_task_ctl_locked(task_t task, uint32_t reasons, int enable_disable) |
| 326 | { |
| 327 | uint32_t origflags; |
| 328 | |
| 329 | assert((reasons != 0) && ((reasons | TF_TELEMETRY) == TF_TELEMETRY)); |
| 330 | |
| 331 | task_lock_assert_owned(task); |
| 332 | |
| 333 | origflags = task->t_flags; |
| 334 | |
| 335 | if (enable_disable == 1) { |
| 336 | task->t_flags |= reasons; |
| 337 | if ((origflags & TF_TELEMETRY) == 0) { |
| 338 | OSIncrementAtomic(&telemetry_active_tasks); |
| 339 | #if TELEMETRY_DEBUG |
| 340 | printf("%s: telemetry OFF -> ON (%d active)\n" , proc_name_address(get_bsdtask_info(task)), telemetry_active_tasks); |
| 341 | #endif |
| 342 | } |
| 343 | } else { |
| 344 | task->t_flags &= ~reasons; |
| 345 | if (((origflags & TF_TELEMETRY) != 0) && ((task->t_flags & TF_TELEMETRY) == 0)) { |
| 346 | /* |
| 347 | * If this task went from having at least one telemetry bit to having none, |
| 348 | * the net change was to disable telemetry for the task. |
| 349 | */ |
| 350 | OSDecrementAtomic(&telemetry_active_tasks); |
| 351 | #if TELEMETRY_DEBUG |
| 352 | printf("%s: telemetry ON -> OFF (%d active)\n" , proc_name_address(get_bsdtask_info(task)), telemetry_active_tasks); |
| 353 | #endif |
| 354 | } |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | /* |
| 359 | * Determine if the current thread is eligible for telemetry: |
| 360 | * |
| 361 | * telemetry_sample_all_tasks: All threads are eligible. This takes precedence. |
| 362 | * telemetry_active_tasks: Count of tasks opted in. |
| 363 | * task->t_flags & TF_TELEMETRY: This task is opted in. |
| 364 | */ |
| 365 | static bool |
| 366 | telemetry_is_active(thread_t thread) |
| 367 | { |
| 368 | task_t task = get_threadtask(thread); |
| 369 | |
| 370 | if (task == kernel_task) { |
| 371 | /* Kernel threads never return to an AST boundary, and are ineligible */ |
| 372 | return false; |
| 373 | } |
| 374 | |
| 375 | if (telemetry_sample_all_tasks || telemetry_sample_pmis) { |
| 376 | return true; |
| 377 | } |
| 378 | |
| 379 | if ((telemetry_active_tasks > 0) && ((task->t_flags & TF_TELEMETRY) != 0)) { |
| 380 | return true; |
| 381 | } |
| 382 | |
| 383 | return false; |
| 384 | } |
| 385 | |
| 386 | /* |
| 387 | * Userland is arming a timer. If we are eligible for such a record, |
| 388 | * sample now. No need to do this one at the AST because we're already at |
| 389 | * a safe place in this system call. |
| 390 | */ |
| 391 | int |
| 392 | telemetry_timer_event(__unused uint64_t deadline, __unused uint64_t interval, __unused uint64_t leeway) |
| 393 | { |
| 394 | if (telemetry_needs_timer_arming_record == TRUE) { |
| 395 | telemetry_needs_timer_arming_record = FALSE; |
| 396 | telemetry_take_sample(thread: current_thread(), flags: (enum micro_snapshot_flags)(kTimerArmingRecord | kUserMode)); |
| 397 | } |
| 398 | |
| 399 | return 0; |
| 400 | } |
| 401 | |
| 402 | #if CONFIG_CPU_COUNTERS |
| 403 | static void |
| 404 | telemetry_pmi_handler(bool user_mode, __unused void *ctx) |
| 405 | { |
| 406 | telemetry_mark_curthread(user_mode, TRUE); |
| 407 | } |
| 408 | #endif /* CONFIG_CPU_COUNTERS */ |
| 409 | |
| 410 | int |
| 411 | telemetry_pmi_setup(enum telemetry_pmi pmi_ctr, uint64_t period) |
| 412 | { |
| 413 | #if CONFIG_CPU_COUNTERS |
| 414 | static bool sample_all_tasks_aside = false; |
| 415 | static uint32_t active_tasks_aside = false; |
| 416 | int error = 0; |
| 417 | const char *name = "?" ; |
| 418 | |
| 419 | unsigned int ctr = 0; |
| 420 | |
| 421 | TELEMETRY_PMI_LOCK(); |
| 422 | |
| 423 | switch (pmi_ctr) { |
| 424 | case TELEMETRY_PMI_NONE: |
| 425 | if (!telemetry_sample_pmis) { |
| 426 | error = 1; |
| 427 | goto out; |
| 428 | } |
| 429 | |
| 430 | telemetry_sample_pmis = false; |
| 431 | telemetry_sample_all_tasks = sample_all_tasks_aside; |
| 432 | telemetry_active_tasks = active_tasks_aside; |
| 433 | error = mt_microstackshot_stop(); |
| 434 | if (!error) { |
| 435 | printf("telemetry: disabling ustackshot on PMI\n" ); |
| 436 | } |
| 437 | goto out; |
| 438 | |
| 439 | case TELEMETRY_PMI_INSTRS: |
| 440 | ctr = MT_CORE_INSTRS; |
| 441 | name = "instructions" ; |
| 442 | break; |
| 443 | |
| 444 | case TELEMETRY_PMI_CYCLES: |
| 445 | ctr = MT_CORE_CYCLES; |
| 446 | name = "cycles" ; |
| 447 | break; |
| 448 | |
| 449 | default: |
| 450 | error = 1; |
| 451 | goto out; |
| 452 | } |
| 453 | |
| 454 | telemetry_sample_pmis = true; |
| 455 | sample_all_tasks_aside = telemetry_sample_all_tasks; |
| 456 | active_tasks_aside = telemetry_active_tasks; |
| 457 | telemetry_sample_all_tasks = false; |
| 458 | telemetry_active_tasks = 0; |
| 459 | |
| 460 | error = mt_microstackshot_start(ctr, period, telemetry_pmi_handler, NULL); |
| 461 | if (!error) { |
| 462 | printf("telemetry: ustackshot every %llu %s\n" , period, name); |
| 463 | } |
| 464 | |
| 465 | out: |
| 466 | TELEMETRY_PMI_UNLOCK(); |
| 467 | return error; |
| 468 | #else /* CONFIG_CPU_COUNTERS */ |
| 469 | #pragma unused(pmi_ctr, period) |
| 470 | return 1; |
| 471 | #endif /* !CONFIG_CPU_COUNTERS */ |
| 472 | } |
| 473 | |
| 474 | /* |
| 475 | * Mark the current thread for an interrupt-based |
| 476 | * telemetry record, to be sampled at the next AST boundary. |
| 477 | */ |
| 478 | void |
| 479 | telemetry_mark_curthread(boolean_t interrupted_userspace, boolean_t pmi) |
| 480 | { |
| 481 | uint32_t ast_bits = 0; |
| 482 | thread_t thread = current_thread(); |
| 483 | |
| 484 | /* |
| 485 | * If telemetry isn't active for this thread, return and try |
| 486 | * again next time. |
| 487 | */ |
| 488 | if (telemetry_is_active(thread) == false) { |
| 489 | return; |
| 490 | } |
| 491 | |
| 492 | ast_bits |= (interrupted_userspace ? AST_TELEMETRY_USER : AST_TELEMETRY_KERNEL); |
| 493 | if (pmi) { |
| 494 | ast_bits |= AST_TELEMETRY_PMI; |
| 495 | } |
| 496 | |
| 497 | telemetry_needs_record = FALSE; |
| 498 | thread_ast_set(thread, ast_bits); |
| 499 | ast_propagate(thread); |
| 500 | } |
| 501 | |
| 502 | void |
| 503 | compute_telemetry(void *arg __unused) |
| 504 | { |
| 505 | if (telemetry_sample_all_tasks || (telemetry_active_tasks > 0)) { |
| 506 | if ((++telemetry_timestamp) % telemetry_sample_rate == 0) { |
| 507 | telemetry_needs_record = TRUE; |
| 508 | telemetry_needs_timer_arming_record = TRUE; |
| 509 | } |
| 510 | } |
| 511 | } |
| 512 | |
| 513 | /* |
| 514 | * If userland has registered a port for telemetry notifications, send one now. |
| 515 | */ |
| 516 | static void |
| 517 | telemetry_notify_user(void) |
| 518 | { |
| 519 | mach_port_t user_port = MACH_PORT_NULL; |
| 520 | |
| 521 | kern_return_t kr = host_get_telemetry_port(host_priv_self(), &user_port); |
| 522 | if ((kr != KERN_SUCCESS) || !IPC_PORT_VALID(user_port)) { |
| 523 | return; |
| 524 | } |
| 525 | |
| 526 | telemetry_notification(telemetry_port: user_port, flags: 0); |
| 527 | ipc_port_release_send(port: user_port); |
| 528 | } |
| 529 | |
| 530 | void |
| 531 | telemetry_ast(thread_t thread, ast_t reasons) |
| 532 | { |
| 533 | assert((reasons & AST_TELEMETRY_ALL) != 0); |
| 534 | |
| 535 | uint8_t record_type = 0; |
| 536 | if (reasons & AST_TELEMETRY_IO) { |
| 537 | record_type |= kIORecord; |
| 538 | } |
| 539 | if (reasons & (AST_TELEMETRY_USER | AST_TELEMETRY_KERNEL)) { |
| 540 | record_type |= (reasons & AST_TELEMETRY_PMI) ? kPMIRecord : |
| 541 | kInterruptRecord; |
| 542 | } |
| 543 | |
| 544 | if ((reasons & AST_TELEMETRY_MACF) != 0) { |
| 545 | record_type |= kMACFRecord; |
| 546 | } |
| 547 | |
| 548 | enum micro_snapshot_flags user_telemetry = (reasons & AST_TELEMETRY_USER) ? kUserMode : 0; |
| 549 | enum micro_snapshot_flags microsnapshot_flags = record_type | user_telemetry; |
| 550 | |
| 551 | if ((reasons & AST_TELEMETRY_MACF) != 0) { |
| 552 | telemetry_macf_take_sample(thread, flags: microsnapshot_flags); |
| 553 | } |
| 554 | |
| 555 | if ((reasons & (AST_TELEMETRY_IO | AST_TELEMETRY_KERNEL | AST_TELEMETRY_PMI |
| 556 | | AST_TELEMETRY_USER)) != 0) { |
| 557 | telemetry_take_sample(thread, flags: microsnapshot_flags); |
| 558 | } |
| 559 | } |
| 560 | |
| 561 | bool |
| 562 | telemetry_task_ready_for_sample(task_t task) |
| 563 | { |
| 564 | return task != TASK_NULL && |
| 565 | task != kernel_task && |
| 566 | !task_did_exec(task) && |
| 567 | !task_is_exec_copy(task); |
| 568 | } |
| 569 | |
| 570 | void |
| 571 | telemetry_instrumentation_begin( |
| 572 | __unused struct micro_snapshot_buffer *buffer, |
| 573 | __unused enum micro_snapshot_flags flags) |
| 574 | { |
| 575 | /* telemetry_XXX accessed outside of lock for instrumentation only */ |
| 576 | KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_START, |
| 577 | flags, telemetry_bytes_since_last_mark, 0, |
| 578 | (&telemetry_buffer != buffer)); |
| 579 | } |
| 580 | |
| 581 | void |
| 582 | telemetry_instrumentation_end(__unused struct micro_snapshot_buffer *buffer) |
| 583 | { |
| 584 | /* telemetry_XXX accessed outside of lock for instrumentation only */ |
| 585 | KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_END, |
| 586 | (&telemetry_buffer == buffer), telemetry_bytes_since_last_mark, |
| 587 | buffer->current_position, buffer->end_point); |
| 588 | } |
| 589 | |
| 590 | void |
| 591 | telemetry_take_sample(thread_t thread, enum micro_snapshot_flags flags) |
| 592 | { |
| 593 | task_t task; |
| 594 | uintptr_t frames[128]; |
| 595 | size_t frames_len = sizeof(frames) / sizeof(frames[0]); |
| 596 | uint32_t btcount; |
| 597 | struct backtrace_user_info btinfo = BTUINFO_INIT; |
| 598 | uint16_t async_start_index = UINT16_MAX; |
| 599 | |
| 600 | if (thread == THREAD_NULL) { |
| 601 | return; |
| 602 | } |
| 603 | |
| 604 | /* Ensure task is ready for taking a sample. */ |
| 605 | task = get_threadtask(thread); |
| 606 | if (!telemetry_task_ready_for_sample(task)) { |
| 607 | return; |
| 608 | } |
| 609 | |
| 610 | telemetry_instrumentation_begin(buffer: &telemetry_buffer, flags); |
| 611 | |
| 612 | /* Collect backtrace from user thread. */ |
| 613 | btcount = backtrace_user(bt: frames, btlen: frames_len, NULL, info_out: &btinfo); |
| 614 | if (btinfo.btui_error != 0) { |
| 615 | return; |
| 616 | } |
| 617 | if (btinfo.btui_async_frame_addr != 0 && |
| 618 | btinfo.btui_async_start_index != 0) { |
| 619 | /* |
| 620 | * Put the async callstack inline after the frame pointer walk call |
| 621 | * stack. |
| 622 | */ |
| 623 | async_start_index = (uint16_t)btinfo.btui_async_start_index; |
| 624 | uintptr_t frame_addr = btinfo.btui_async_frame_addr; |
| 625 | unsigned int frames_left = frames_len - async_start_index; |
| 626 | struct backtrace_control ctl = { .btc_frame_addr = frame_addr, }; |
| 627 | btinfo = BTUINFO_INIT; |
| 628 | unsigned int async_filled = backtrace_user(bt: frames + async_start_index, |
| 629 | btlen: frames_left, ctl: &ctl, info_out: &btinfo); |
| 630 | if (btinfo.btui_error == 0) { |
| 631 | btcount = MIN(async_start_index + async_filled, frames_len); |
| 632 | } |
| 633 | } |
| 634 | |
| 635 | /* Process the backtrace. */ |
| 636 | struct telemetry_target target = { |
| 637 | .thread = thread, |
| 638 | .frames = frames, |
| 639 | .frames_count = btcount, |
| 640 | .user64_regs = (btinfo.btui_info & BTI_64_BIT) != 0, |
| 641 | .microsnapshot_flags = flags, |
| 642 | .buffer = &telemetry_buffer, |
| 643 | .buffer_mtx = &telemetry_mtx, |
| 644 | .async_start_index = async_start_index, |
| 645 | }; |
| 646 | telemetry_process_sample(target: &target, true, NULL); |
| 647 | |
| 648 | telemetry_instrumentation_end(buffer: &telemetry_buffer); |
| 649 | } |
| 650 | |
| 651 | #if CONFIG_MACF |
| 652 | void |
| 653 | telemetry_macf_take_sample(thread_t thread, enum micro_snapshot_flags flags) |
| 654 | { |
| 655 | task_t task; |
| 656 | |
| 657 | vm_size_t btcapacity = 128; |
| 658 | uintptr_t frames_stack[btcapacity]; |
| 659 | uint32_t btcount = 0; |
| 660 | typedef uintptr_t telemetry_user_frame_t __kernel_data_semantics; |
| 661 | telemetry_user_frame_t *frames = frames_stack; |
| 662 | bool alloced_frames = false; |
| 663 | |
| 664 | struct backtrace_user_info btinfo = BTUINFO_INIT; |
| 665 | struct backtrace_control btctl = BTCTL_INIT; |
| 666 | |
| 667 | uint32_t retry_count = 0; |
| 668 | const uint32_t max_retries = 10; |
| 669 | |
| 670 | bool initialized = false; |
| 671 | struct micro_snapshot_buffer *telbuf = &telemetry_macf_buffer; |
| 672 | uint32_t record_start = 0; |
| 673 | bool did_process = false; |
| 674 | int rv = 0; |
| 675 | |
| 676 | if (thread == THREAD_NULL) { |
| 677 | return; |
| 678 | } |
| 679 | |
| 680 | telemetry_instrumentation_begin(buffer: telbuf, flags); |
| 681 | |
| 682 | /* Ensure task is ready for taking a sample. */ |
| 683 | task = get_threadtask(thread); |
| 684 | if (!telemetry_task_ready_for_sample(task)) { |
| 685 | rv = EBUSY; |
| 686 | goto out; |
| 687 | } |
| 688 | |
| 689 | /* Ensure MACF telemetry buffer was initialized. */ |
| 690 | TELEMETRY_MACF_LOCK(); |
| 691 | initialized = (telbuf->size > 0); |
| 692 | TELEMETRY_MACF_UNLOCK(); |
| 693 | |
| 694 | if (!initialized) { |
| 695 | rv = ENOMEM; |
| 696 | goto out; |
| 697 | } |
| 698 | |
| 699 | /* Collect backtrace from user thread. */ |
| 700 | while (retry_count < max_retries) { |
| 701 | btcount += backtrace_user(bt: frames + btcount, btlen: btcapacity - btcount, ctl: &btctl, info_out: &btinfo); |
| 702 | |
| 703 | if ((btinfo.btui_info & BTI_TRUNCATED) != 0 && btinfo.btui_next_frame_addr != 0) { |
| 704 | /* |
| 705 | * Fast path uses stack memory to avoid an allocation. We must |
| 706 | * pivot to heap memory in the case where we cannot write the |
| 707 | * complete backtrace to this buffer. |
| 708 | */ |
| 709 | if (frames == frames_stack) { |
| 710 | btcapacity += 128; |
| 711 | frames = kalloc_data(btcapacity * sizeof(*frames), Z_WAITOK); |
| 712 | |
| 713 | if (frames == NULL) { |
| 714 | break; |
| 715 | } |
| 716 | |
| 717 | alloced_frames = true; |
| 718 | |
| 719 | assert(btcapacity > sizeof(frames_stack) / sizeof(frames_stack[0])); |
| 720 | memcpy(dst: frames, src: frames_stack, n: sizeof(frames_stack)); |
| 721 | } else { |
| 722 | assert(alloced_frames); |
| 723 | frames = krealloc_data(frames, |
| 724 | btcapacity * sizeof(*frames), |
| 725 | (btcapacity + 128) * sizeof(*frames), |
| 726 | Z_WAITOK); |
| 727 | |
| 728 | if (frames == NULL) { |
| 729 | break; |
| 730 | } |
| 731 | |
| 732 | btcapacity += 128; |
| 733 | } |
| 734 | |
| 735 | btctl.btc_frame_addr = btinfo.btui_next_frame_addr; |
| 736 | ++retry_count; |
| 737 | } else { |
| 738 | break; |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | if (frames == NULL) { |
| 743 | rv = ENOMEM; |
| 744 | goto out; |
| 745 | } else if (btinfo.btui_error != 0) { |
| 746 | rv = btinfo.btui_error; |
| 747 | goto out; |
| 748 | } |
| 749 | |
| 750 | /* Process the backtrace. */ |
| 751 | struct telemetry_target target = { |
| 752 | .thread = thread, |
| 753 | .frames = frames, |
| 754 | .frames_count = btcount, |
| 755 | .user64_regs = (btinfo.btui_info & BTI_64_BIT) != 0, |
| 756 | .microsnapshot_flags = flags, |
| 757 | .buffer = telbuf, |
| 758 | .buffer_mtx = &telemetry_macf_mtx |
| 759 | }; |
| 760 | rv = telemetry_process_sample(target: &target, false, out_current_record_start: &record_start); |
| 761 | did_process = true; |
| 762 | |
| 763 | out: |
| 764 | /* Immediately deliver the collected sample to MAC clients. */ |
| 765 | if (rv == 0) { |
| 766 | assert(telbuf->current_position >= record_start); |
| 767 | mac_thread_telemetry(thread, |
| 768 | 0, |
| 769 | (void *)(telbuf->buffer + record_start), |
| 770 | telbuf->current_position - record_start); |
| 771 | } else { |
| 772 | mac_thread_telemetry(thread, rv, NULL, 0); |
| 773 | } |
| 774 | |
| 775 | /* |
| 776 | * The lock was taken by telemetry_process_sample, and we asked it not to |
| 777 | * unlock upon completion, so we must release the lock here. |
| 778 | */ |
| 779 | if (did_process) { |
| 780 | TELEMETRY_MACF_UNLOCK(); |
| 781 | } |
| 782 | |
| 783 | if (alloced_frames && frames != NULL) { |
| 784 | kfree_data(frames, btcapacity * sizeof(*frames)); |
| 785 | } |
| 786 | |
| 787 | telemetry_instrumentation_end(buffer: telbuf); |
| 788 | } |
| 789 | #endif /* CONFIG_MACF */ |
| 790 | |
| 791 | int |
| 792 | telemetry_process_sample(const struct telemetry_target *target, |
| 793 | bool release_buffer_lock, |
| 794 | uint32_t *out_current_record_start) |
| 795 | { |
| 796 | thread_t thread = target->thread; |
| 797 | uintptr_t *frames = target->frames; |
| 798 | size_t btcount = target->frames_count; |
| 799 | bool user64_regs = target->user64_regs; |
| 800 | enum micro_snapshot_flags microsnapshot_flags = target->microsnapshot_flags; |
| 801 | struct micro_snapshot_buffer *current_buffer = target->buffer; |
| 802 | lck_mtx_t *buffer_mtx = target->buffer_mtx; |
| 803 | |
| 804 | task_t task; |
| 805 | void *p; |
| 806 | uint32_t bti; |
| 807 | struct micro_snapshot *msnap; |
| 808 | struct task_snapshot *tsnap; |
| 809 | struct thread_snapshot *thsnap; |
| 810 | clock_sec_t secs; |
| 811 | clock_usec_t usecs; |
| 812 | vm_size_t framesize; |
| 813 | uint32_t current_record_start; |
| 814 | uint32_t tmp = 0; |
| 815 | bool notify = false; |
| 816 | int rv = 0; |
| 817 | |
| 818 | if (thread == THREAD_NULL) { |
| 819 | return EINVAL; |
| 820 | } |
| 821 | |
| 822 | task = get_threadtask(thread); |
| 823 | p = get_bsdtask_info(task); |
| 824 | bool user64_va = task_has_64Bit_addr(task); |
| 825 | |
| 826 | /* |
| 827 | * Retrieve the array of UUID's for binaries used by this task. |
| 828 | * We reach down into DYLD's data structures to find the array. |
| 829 | * |
| 830 | * XXX - make this common with kdp? |
| 831 | */ |
| 832 | uint32_t uuid_info_count = 0; |
| 833 | mach_vm_address_t uuid_info_addr = 0; |
| 834 | uint32_t uuid_info_size = 0; |
| 835 | if (user64_va) { |
| 836 | uuid_info_size = sizeof(struct user64_dyld_uuid_info); |
| 837 | struct user64_dyld_all_image_infos task_image_infos; |
| 838 | if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) { |
| 839 | uuid_info_count = (uint32_t)task_image_infos.uuidArrayCount; |
| 840 | uuid_info_addr = task_image_infos.uuidArray; |
| 841 | } |
| 842 | } else { |
| 843 | uuid_info_size = sizeof(struct user32_dyld_uuid_info); |
| 844 | struct user32_dyld_all_image_infos task_image_infos; |
| 845 | if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) { |
| 846 | uuid_info_count = task_image_infos.uuidArrayCount; |
| 847 | uuid_info_addr = task_image_infos.uuidArray; |
| 848 | } |
| 849 | } |
| 850 | |
| 851 | /* |
| 852 | * If we get a NULL uuid_info_addr (which can happen when we catch dyld in the middle of updating |
| 853 | * this data structure), we zero the uuid_info_count so that we won't even try to save load info |
| 854 | * for this task. |
| 855 | */ |
| 856 | if (!uuid_info_addr) { |
| 857 | uuid_info_count = 0; |
| 858 | } |
| 859 | |
| 860 | /* |
| 861 | * Don't copy in an unbounded amount of memory. The main binary and interesting |
| 862 | * non-shared-cache libraries should be in the first few images. |
| 863 | */ |
| 864 | if (uuid_info_count > TELEMETRY_MAX_UUID_COUNT) { |
| 865 | uuid_info_count = TELEMETRY_MAX_UUID_COUNT; |
| 866 | } |
| 867 | |
| 868 | uint32_t uuid_info_array_size = uuid_info_count * uuid_info_size; |
| 869 | char *uuid_info_array = NULL; |
| 870 | |
| 871 | if (uuid_info_count > 0) { |
| 872 | uuid_info_array = kalloc_data(uuid_info_array_size, Z_WAITOK); |
| 873 | if (uuid_info_array == NULL) { |
| 874 | return ENOMEM; |
| 875 | } |
| 876 | |
| 877 | /* |
| 878 | * Copy in the UUID info array. |
| 879 | * It may be nonresident, in which case just fix up nloadinfos to 0 in the task snapshot. |
| 880 | */ |
| 881 | if (copyin(uuid_info_addr, uuid_info_array, uuid_info_array_size) != 0) { |
| 882 | kfree_data(uuid_info_array, uuid_info_array_size); |
| 883 | uuid_info_array = NULL; |
| 884 | uuid_info_array_size = 0; |
| 885 | } |
| 886 | } |
| 887 | |
| 888 | /* |
| 889 | * Look for a dispatch queue serial number, and copy it in from userland if present. |
| 890 | */ |
| 891 | uint64_t dqserialnum = 0; |
| 892 | int dqserialnum_valid = 0; |
| 893 | |
| 894 | uint64_t dqkeyaddr = thread_dispatchqaddr(thread); |
| 895 | if (dqkeyaddr != 0) { |
| 896 | uint64_t dqaddr = 0; |
| 897 | uint64_t dq_serialno_offset = get_task_dispatchqueue_serialno_offset(task); |
| 898 | if ((copyin(dqkeyaddr, (char *)&dqaddr, (user64_va ? 8 : 4)) == 0) && |
| 899 | (dqaddr != 0) && (dq_serialno_offset != 0)) { |
| 900 | uint64_t dqserialnumaddr = dqaddr + dq_serialno_offset; |
| 901 | if (copyin(dqserialnumaddr, (char *)&dqserialnum, (user64_va ? 8 : 4)) == 0) { |
| 902 | dqserialnum_valid = 1; |
| 903 | } |
| 904 | } |
| 905 | } |
| 906 | |
| 907 | clock_get_calendar_microtime(secs: &secs, microsecs: &usecs); |
| 908 | |
| 909 | lck_mtx_lock(lck: buffer_mtx); |
| 910 | |
| 911 | /* |
| 912 | * If our buffer is not backed by anything, |
| 913 | * then we cannot take the sample. Meant to allow us to deallocate the window |
| 914 | * buffer if it is disabled. |
| 915 | */ |
| 916 | if (!current_buffer->buffer) { |
| 917 | rv = EINVAL; |
| 918 | goto cancel_sample; |
| 919 | } |
| 920 | |
| 921 | /* |
| 922 | * We do the bulk of the operation under the telemetry lock, on assumption that |
| 923 | * any page faults during execution will not cause another AST_TELEMETRY_ALL |
| 924 | * to deadlock; they will just block until we finish. This makes it easier |
| 925 | * to copy into the buffer directly. As soon as we unlock, userspace can copy |
| 926 | * out of our buffer. |
| 927 | */ |
| 928 | |
| 929 | copytobuffer: |
| 930 | |
| 931 | current_record_start = current_buffer->current_position; |
| 932 | |
| 933 | if ((current_buffer->size - current_buffer->current_position) < sizeof(struct micro_snapshot)) { |
| 934 | /* |
| 935 | * We can't fit a record in the space available, so wrap around to the beginning. |
| 936 | * Save the current position as the known end point of valid data. |
| 937 | */ |
| 938 | current_buffer->end_point = current_record_start; |
| 939 | current_buffer->current_position = 0; |
| 940 | if (current_record_start == 0) { |
| 941 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ |
| 942 | rv = ERANGE; |
| 943 | goto cancel_sample; |
| 944 | } |
| 945 | goto copytobuffer; |
| 946 | } |
| 947 | |
| 948 | msnap = (struct micro_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position); |
| 949 | msnap->snapshot_magic = STACKSHOT_MICRO_SNAPSHOT_MAGIC; |
| 950 | msnap->ms_flags = (uint8_t)microsnapshot_flags; |
| 951 | msnap->ms_opaque_flags = 0; /* namespace managed by userspace */ |
| 952 | msnap->ms_cpu = cpu_number(); |
| 953 | msnap->ms_time = secs; |
| 954 | msnap->ms_time_microsecs = usecs; |
| 955 | |
| 956 | current_buffer->current_position += sizeof(struct micro_snapshot); |
| 957 | |
| 958 | if ((current_buffer->size - current_buffer->current_position) < sizeof(struct task_snapshot)) { |
| 959 | current_buffer->end_point = current_record_start; |
| 960 | current_buffer->current_position = 0; |
| 961 | if (current_record_start == 0) { |
| 962 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ |
| 963 | rv = ERANGE; |
| 964 | goto cancel_sample; |
| 965 | } |
| 966 | goto copytobuffer; |
| 967 | } |
| 968 | |
| 969 | tsnap = (struct task_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position); |
| 970 | bzero(s: tsnap, n: sizeof(*tsnap)); |
| 971 | tsnap->snapshot_magic = STACKSHOT_TASK_SNAPSHOT_MAGIC; |
| 972 | tsnap->pid = proc_pid(p); |
| 973 | tsnap->uniqueid = proc_uniqueid(p); |
| 974 | struct recount_times_mach times = recount_task_terminated_times(task); |
| 975 | tsnap->user_time_in_terminated_threads = times.rtm_user; |
| 976 | tsnap->system_time_in_terminated_threads = times.rtm_system; |
| 977 | tsnap->suspend_count = task->suspend_count; |
| 978 | tsnap->task_size = (typeof(tsnap->task_size))(get_task_phys_footprint(task) / PAGE_SIZE); |
| 979 | tsnap->faults = counter_load(&task->faults); |
| 980 | tsnap->pageins = counter_load(&task->pageins); |
| 981 | tsnap->cow_faults = counter_load(&task->cow_faults); |
| 982 | /* |
| 983 | * The throttling counters are maintained as 64-bit counters in the proc |
| 984 | * structure. However, we reserve 32-bits (each) for them in the task_snapshot |
| 985 | * struct to save space and since we do not expect them to overflow 32-bits. If we |
| 986 | * find these values overflowing in the future, the fix would be to simply |
| 987 | * upgrade these counters to 64-bit in the task_snapshot struct |
| 988 | */ |
| 989 | tsnap->was_throttled = (uint32_t) proc_was_throttled(p); |
| 990 | tsnap->did_throttle = (uint32_t) proc_did_throttle(p); |
| 991 | #if CONFIG_COALITIONS |
| 992 | /* |
| 993 | * These fields are overloaded to represent the resource coalition ID of |
| 994 | * this task... |
| 995 | */ |
| 996 | coalition_t rsrc_coal = task->coalition[COALITION_TYPE_RESOURCE]; |
| 997 | tsnap->p_start_sec = rsrc_coal ? coalition_id(coal: rsrc_coal) : 0; |
| 998 | /* |
| 999 | * ... and the processes this thread is doing work on behalf of. |
| 1000 | */ |
| 1001 | pid_t origin_pid = -1, proximate_pid = -1; |
| 1002 | (void)thread_get_voucher_origin_proximate_pid(thread, origin_pid: &origin_pid, proximate_pid: &proximate_pid); |
| 1003 | tsnap->p_start_usec = ((uint64_t)proximate_pid << 32) | (uint32_t)origin_pid; |
| 1004 | #endif /* CONFIG_COALITIONS */ |
| 1005 | |
| 1006 | if (task->t_flags & TF_TELEMETRY) { |
| 1007 | tsnap->ss_flags |= kTaskRsrcFlagged; |
| 1008 | } |
| 1009 | |
| 1010 | if (proc_get_effective_task_policy(task, TASK_POLICY_DARWIN_BG)) { |
| 1011 | tsnap->ss_flags |= kTaskDarwinBG; |
| 1012 | } |
| 1013 | |
| 1014 | proc_get_darwinbgstate(task, flagsp: &tmp); |
| 1015 | |
| 1016 | if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) == TASK_FOREGROUND_APPLICATION) { |
| 1017 | tsnap->ss_flags |= kTaskIsForeground; |
| 1018 | } |
| 1019 | |
| 1020 | if (tmp & PROC_FLAG_ADAPTIVE_IMPORTANT) { |
| 1021 | tsnap->ss_flags |= kTaskIsBoosted; |
| 1022 | } |
| 1023 | |
| 1024 | if (tmp & PROC_FLAG_SUPPRESSED) { |
| 1025 | tsnap->ss_flags |= kTaskIsSuppressed; |
| 1026 | } |
| 1027 | |
| 1028 | |
| 1029 | tsnap->latency_qos = task_grab_latency_qos(task); |
| 1030 | |
| 1031 | strlcpy(dst: tsnap->p_comm, src: proc_name_address(p), n: sizeof(tsnap->p_comm)); |
| 1032 | if (user64_va) { |
| 1033 | tsnap->ss_flags |= kUser64_p; |
| 1034 | } |
| 1035 | |
| 1036 | if (task->task_shared_region_slide != -1) { |
| 1037 | tsnap->shared_cache_slide = task->task_shared_region_slide; |
| 1038 | bcopy(src: task->task_shared_region_uuid, dst: tsnap->shared_cache_identifier, |
| 1039 | n: sizeof(task->task_shared_region_uuid)); |
| 1040 | } |
| 1041 | |
| 1042 | current_buffer->current_position += sizeof(struct task_snapshot); |
| 1043 | |
| 1044 | /* |
| 1045 | * Directly after the task snapshot, place the array of UUID's corresponding to the binaries |
| 1046 | * used by this task. |
| 1047 | */ |
| 1048 | if ((current_buffer->size - current_buffer->current_position) < uuid_info_array_size) { |
| 1049 | current_buffer->end_point = current_record_start; |
| 1050 | current_buffer->current_position = 0; |
| 1051 | if (current_record_start == 0) { |
| 1052 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ |
| 1053 | rv = ERANGE; |
| 1054 | goto cancel_sample; |
| 1055 | } |
| 1056 | goto copytobuffer; |
| 1057 | } |
| 1058 | |
| 1059 | /* |
| 1060 | * Copy the UUID info array into our sample. |
| 1061 | */ |
| 1062 | if (uuid_info_array_size > 0) { |
| 1063 | bcopy(src: uuid_info_array, dst: (char *)(current_buffer->buffer + current_buffer->current_position), n: uuid_info_array_size); |
| 1064 | tsnap->nloadinfos = uuid_info_count; |
| 1065 | } |
| 1066 | |
| 1067 | current_buffer->current_position += uuid_info_array_size; |
| 1068 | |
| 1069 | /* |
| 1070 | * After the task snapshot & list of binary UUIDs, we place a thread snapshot. |
| 1071 | */ |
| 1072 | |
| 1073 | if ((current_buffer->size - current_buffer->current_position) < sizeof(struct thread_snapshot)) { |
| 1074 | /* wrap and overwrite */ |
| 1075 | current_buffer->end_point = current_record_start; |
| 1076 | current_buffer->current_position = 0; |
| 1077 | if (current_record_start == 0) { |
| 1078 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ |
| 1079 | rv = ERANGE; |
| 1080 | goto cancel_sample; |
| 1081 | } |
| 1082 | goto copytobuffer; |
| 1083 | } |
| 1084 | |
| 1085 | thsnap = (struct thread_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position); |
| 1086 | bzero(s: thsnap, n: sizeof(*thsnap)); |
| 1087 | |
| 1088 | thsnap->snapshot_magic = STACKSHOT_THREAD_SNAPSHOT_MAGIC; |
| 1089 | thsnap->thread_id = thread_tid(thread); |
| 1090 | thsnap->state = thread->state; |
| 1091 | thsnap->priority = thread->base_pri; |
| 1092 | thsnap->sched_pri = thread->sched_pri; |
| 1093 | thsnap->sched_flags = thread->sched_flags; |
| 1094 | thsnap->ss_flags |= kStacksPCOnly; |
| 1095 | thsnap->ts_qos = thread->effective_policy.thep_qos; |
| 1096 | thsnap->ts_rqos = thread->requested_policy.thrp_qos; |
| 1097 | thsnap->ts_rqos_override = MAX(thread->requested_policy.thrp_qos_override, |
| 1098 | thread->requested_policy.thrp_qos_workq_override); |
| 1099 | memcpy(dst: thsnap->_reserved + 1, src: &target->async_start_index, |
| 1100 | n: sizeof(target->async_start_index)); |
| 1101 | |
| 1102 | if (proc_get_effective_thread_policy(thread, TASK_POLICY_DARWIN_BG)) { |
| 1103 | thsnap->ss_flags |= kThreadDarwinBG; |
| 1104 | } |
| 1105 | |
| 1106 | boolean_t interrupt_state = ml_set_interrupts_enabled(FALSE); |
| 1107 | times = recount_current_thread_times(); |
| 1108 | ml_set_interrupts_enabled(enable: interrupt_state); |
| 1109 | thsnap->user_time = times.rtm_user; |
| 1110 | thsnap->system_time = times.rtm_system; |
| 1111 | |
| 1112 | current_buffer->current_position += sizeof(struct thread_snapshot); |
| 1113 | |
| 1114 | /* |
| 1115 | * If this thread has a dispatch queue serial number, include it here. |
| 1116 | */ |
| 1117 | if (dqserialnum_valid) { |
| 1118 | if ((current_buffer->size - current_buffer->current_position) < sizeof(dqserialnum)) { |
| 1119 | /* wrap and overwrite */ |
| 1120 | current_buffer->end_point = current_record_start; |
| 1121 | current_buffer->current_position = 0; |
| 1122 | if (current_record_start == 0) { |
| 1123 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ |
| 1124 | rv = ERANGE; |
| 1125 | goto cancel_sample; |
| 1126 | } |
| 1127 | goto copytobuffer; |
| 1128 | } |
| 1129 | |
| 1130 | thsnap->ss_flags |= kHasDispatchSerial; |
| 1131 | bcopy(src: &dqserialnum, dst: (char *)current_buffer->buffer + current_buffer->current_position, n: sizeof(dqserialnum)); |
| 1132 | current_buffer->current_position += sizeof(dqserialnum); |
| 1133 | } |
| 1134 | |
| 1135 | if (user64_regs) { |
| 1136 | framesize = 8; |
| 1137 | thsnap->ss_flags |= kUser64_p; |
| 1138 | } else { |
| 1139 | framesize = 4; |
| 1140 | } |
| 1141 | |
| 1142 | /* |
| 1143 | * If we can't fit this entire stacktrace then cancel this record, wrap to the beginning, |
| 1144 | * and start again there so that we always store a full record. |
| 1145 | */ |
| 1146 | if ((current_buffer->size - current_buffer->current_position) / framesize < btcount) { |
| 1147 | current_buffer->end_point = current_record_start; |
| 1148 | current_buffer->current_position = 0; |
| 1149 | if (current_record_start == 0) { |
| 1150 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ |
| 1151 | rv = ERANGE; |
| 1152 | goto cancel_sample; |
| 1153 | } |
| 1154 | goto copytobuffer; |
| 1155 | } |
| 1156 | |
| 1157 | for (bti = 0; bti < btcount; bti++, current_buffer->current_position += framesize) { |
| 1158 | if (framesize == 8) { |
| 1159 | *(uint64_t *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position) = frames[bti]; |
| 1160 | } else { |
| 1161 | *(uint32_t *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position) = (uint32_t)frames[bti]; |
| 1162 | } |
| 1163 | } |
| 1164 | |
| 1165 | if (current_buffer->end_point < current_buffer->current_position) { |
| 1166 | /* |
| 1167 | * Each time the cursor wraps around to the beginning, we leave a |
| 1168 | * differing amount of unused space at the end of the buffer. Make |
| 1169 | * sure the cursor pushes the end point in case we're making use of |
| 1170 | * more of the buffer than we did the last time we wrapped. |
| 1171 | */ |
| 1172 | current_buffer->end_point = current_buffer->current_position; |
| 1173 | } |
| 1174 | |
| 1175 | thsnap->nuser_frames = btcount; |
| 1176 | |
| 1177 | /* |
| 1178 | * Now THIS is a hack. |
| 1179 | */ |
| 1180 | if (current_buffer == &telemetry_buffer) { |
| 1181 | telemetry_bytes_since_last_mark += (current_buffer->current_position - current_record_start); |
| 1182 | if (telemetry_bytes_since_last_mark > telemetry_buffer_notify_at) { |
| 1183 | notify = true; |
| 1184 | } |
| 1185 | } |
| 1186 | |
| 1187 | if (out_current_record_start != NULL) { |
| 1188 | *out_current_record_start = current_record_start; |
| 1189 | } |
| 1190 | |
| 1191 | cancel_sample: |
| 1192 | if (release_buffer_lock) { |
| 1193 | lck_mtx_unlock(lck: buffer_mtx); |
| 1194 | } |
| 1195 | |
| 1196 | if (notify) { |
| 1197 | telemetry_notify_user(); |
| 1198 | } |
| 1199 | |
| 1200 | if (uuid_info_array != NULL) { |
| 1201 | kfree_data(uuid_info_array, uuid_info_array_size); |
| 1202 | } |
| 1203 | |
| 1204 | return rv; |
| 1205 | } |
| 1206 | |
| 1207 | #if TELEMETRY_DEBUG |
| 1208 | static void |
| 1209 | log_telemetry_output(vm_offset_t buf, uint32_t pos, uint32_t sz) |
| 1210 | { |
| 1211 | struct micro_snapshot *p; |
| 1212 | uint32_t offset; |
| 1213 | |
| 1214 | printf("Copying out %d bytes of telemetry at offset %d\n" , sz, pos); |
| 1215 | |
| 1216 | buf += pos; |
| 1217 | |
| 1218 | /* |
| 1219 | * Find and log each timestamp in this chunk of buffer. |
| 1220 | */ |
| 1221 | for (offset = 0; offset < sz; offset++) { |
| 1222 | p = (struct micro_snapshot *)(buf + offset); |
| 1223 | if (p->snapshot_magic == STACKSHOT_MICRO_SNAPSHOT_MAGIC) { |
| 1224 | printf("telemetry timestamp: %lld\n" , p->ms_time); |
| 1225 | } |
| 1226 | } |
| 1227 | } |
| 1228 | #endif |
| 1229 | |
| 1230 | int |
| 1231 | telemetry_gather(user_addr_t buffer, uint32_t *length, bool mark) |
| 1232 | { |
| 1233 | return telemetry_buffer_gather(buffer, length, mark, current_buffer: &telemetry_buffer); |
| 1234 | } |
| 1235 | |
| 1236 | int |
| 1237 | telemetry_buffer_gather(user_addr_t buffer, uint32_t *length, bool mark, struct micro_snapshot_buffer * current_buffer) |
| 1238 | { |
| 1239 | int result = 0; |
| 1240 | uint32_t oldest_record_offset; |
| 1241 | |
| 1242 | KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_START, |
| 1243 | mark, telemetry_bytes_since_last_mark, 0, |
| 1244 | (&telemetry_buffer != current_buffer)); |
| 1245 | |
| 1246 | TELEMETRY_LOCK(); |
| 1247 | |
| 1248 | if (current_buffer->buffer == 0) { |
| 1249 | *length = 0; |
| 1250 | goto out; |
| 1251 | } |
| 1252 | |
| 1253 | if (*length < current_buffer->size) { |
| 1254 | result = KERN_NO_SPACE; |
| 1255 | goto out; |
| 1256 | } |
| 1257 | |
| 1258 | /* |
| 1259 | * Copy the ring buffer out to userland in order sorted by time: least recent to most recent. |
| 1260 | * First, we need to search forward from the cursor to find the oldest record in our buffer. |
| 1261 | */ |
| 1262 | oldest_record_offset = current_buffer->current_position; |
| 1263 | do { |
| 1264 | if (((oldest_record_offset + sizeof(uint32_t)) > current_buffer->size) || |
| 1265 | ((oldest_record_offset + sizeof(uint32_t)) > current_buffer->end_point)) { |
| 1266 | if (*(uint32_t *)(uintptr_t)(current_buffer->buffer) == 0) { |
| 1267 | /* |
| 1268 | * There is no magic number at the start of the buffer, which means |
| 1269 | * it's empty; nothing to see here yet. |
| 1270 | */ |
| 1271 | *length = 0; |
| 1272 | goto out; |
| 1273 | } |
| 1274 | /* |
| 1275 | * We've looked through the end of the active buffer without finding a valid |
| 1276 | * record; that means all valid records are in a single chunk, beginning at |
| 1277 | * the very start of the buffer. |
| 1278 | */ |
| 1279 | |
| 1280 | oldest_record_offset = 0; |
| 1281 | assert(*(uint32_t *)(uintptr_t)(current_buffer->buffer) == STACKSHOT_MICRO_SNAPSHOT_MAGIC); |
| 1282 | break; |
| 1283 | } |
| 1284 | |
| 1285 | if (*(uint32_t *)(uintptr_t)(current_buffer->buffer + oldest_record_offset) == STACKSHOT_MICRO_SNAPSHOT_MAGIC) { |
| 1286 | break; |
| 1287 | } |
| 1288 | |
| 1289 | /* |
| 1290 | * There are no alignment guarantees for micro-stackshot records, so we must search at each |
| 1291 | * byte offset. |
| 1292 | */ |
| 1293 | oldest_record_offset++; |
| 1294 | } while (oldest_record_offset != current_buffer->current_position); |
| 1295 | |
| 1296 | /* |
| 1297 | * If needed, copyout in two chunks: from the oldest record to the end of the buffer, and then |
| 1298 | * from the beginning of the buffer up to the current position. |
| 1299 | */ |
| 1300 | if (oldest_record_offset != 0) { |
| 1301 | #if TELEMETRY_DEBUG |
| 1302 | log_telemetry_output(current_buffer->buffer, oldest_record_offset, |
| 1303 | current_buffer->end_point - oldest_record_offset); |
| 1304 | #endif |
| 1305 | if ((result = copyout((void *)(current_buffer->buffer + oldest_record_offset), buffer, |
| 1306 | current_buffer->end_point - oldest_record_offset)) != 0) { |
| 1307 | *length = 0; |
| 1308 | goto out; |
| 1309 | } |
| 1310 | *length = current_buffer->end_point - oldest_record_offset; |
| 1311 | } else { |
| 1312 | *length = 0; |
| 1313 | } |
| 1314 | |
| 1315 | #if TELEMETRY_DEBUG |
| 1316 | log_telemetry_output(current_buffer->buffer, 0, current_buffer->current_position); |
| 1317 | #endif |
| 1318 | if ((result = copyout((void *)current_buffer->buffer, buffer + *length, |
| 1319 | current_buffer->current_position)) != 0) { |
| 1320 | *length = 0; |
| 1321 | goto out; |
| 1322 | } |
| 1323 | *length += (uint32_t)current_buffer->current_position; |
| 1324 | |
| 1325 | out: |
| 1326 | |
| 1327 | if (mark && (*length > 0)) { |
| 1328 | telemetry_bytes_since_last_mark = 0; |
| 1329 | } |
| 1330 | |
| 1331 | TELEMETRY_UNLOCK(); |
| 1332 | |
| 1333 | KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_END, |
| 1334 | current_buffer->current_position, *length, |
| 1335 | current_buffer->end_point, (&telemetry_buffer != current_buffer)); |
| 1336 | |
| 1337 | return result; |
| 1338 | } |
| 1339 | |
| 1340 | #if CONFIG_MACF |
| 1341 | static int |
| 1342 | telemetry_macf_init_locked(size_t buffer_size) |
| 1343 | { |
| 1344 | kern_return_t kr; |
| 1345 | |
| 1346 | if (buffer_size > TELEMETRY_MAX_BUFFER_SIZE) { |
| 1347 | buffer_size = TELEMETRY_MAX_BUFFER_SIZE; |
| 1348 | } |
| 1349 | |
| 1350 | telemetry_macf_buffer.size = buffer_size; |
| 1351 | |
| 1352 | kr = kmem_alloc(map: kernel_map, addrp: &telemetry_macf_buffer.buffer, |
| 1353 | size: telemetry_macf_buffer.size, flags: KMA_DATA | KMA_ZERO | KMA_PERMANENT, |
| 1354 | VM_KERN_MEMORY_SECURITY); |
| 1355 | |
| 1356 | if (kr != KERN_SUCCESS) { |
| 1357 | kprintf(fmt: "Telemetry (MACF): Allocation failed: %d\n" , kr); |
| 1358 | return ENOMEM; |
| 1359 | } |
| 1360 | |
| 1361 | return 0; |
| 1362 | } |
| 1363 | |
| 1364 | int |
| 1365 | telemetry_macf_mark_curthread(void) |
| 1366 | { |
| 1367 | thread_t thread = current_thread(); |
| 1368 | task_t task = get_threadtask(thread); |
| 1369 | int rv = 0; |
| 1370 | |
| 1371 | if (task == kernel_task) { |
| 1372 | /* Kernel threads never return to an AST boundary, and are ineligible */ |
| 1373 | return EINVAL; |
| 1374 | } |
| 1375 | |
| 1376 | /* Initialize the MACF telemetry buffer if needed. */ |
| 1377 | TELEMETRY_MACF_LOCK(); |
| 1378 | if (__improbable(telemetry_macf_buffer.size == 0)) { |
| 1379 | rv = telemetry_macf_init_locked(TELEMETRY_MACF_DEFAULT_BUFFER_SIZE); |
| 1380 | |
| 1381 | if (rv != 0) { |
| 1382 | return rv; |
| 1383 | } |
| 1384 | } |
| 1385 | TELEMETRY_MACF_UNLOCK(); |
| 1386 | |
| 1387 | act_set_macf_telemetry_ast(thread); |
| 1388 | return 0; |
| 1389 | } |
| 1390 | #endif /* CONFIG_MACF */ |
| 1391 | |
| 1392 | |
| 1393 | static void |
| 1394 | telemetry_stash_ca_event( |
| 1395 | kernel_brk_type_t type, |
| 1396 | uint16_t , |
| 1397 | uint32_t total_frames, |
| 1398 | uintptr_t *backtrace, |
| 1399 | uintptr_t faulting_address) |
| 1400 | { |
| 1401 | /* Skip telemetry if we accidentally took a fault while handling telemetry */ |
| 1402 | bool *in_handler = PERCPU_GET(brk_telemetry_in_handler); |
| 1403 | if (*in_handler) { |
| 1404 | #if DEVELOPMENT |
| 1405 | panic("Breakpoint trap re-entered from within a spinlock" ); |
| 1406 | #endif |
| 1407 | return; |
| 1408 | } |
| 1409 | |
| 1410 | /* Rate limit on repeatedly seeing the same address */ |
| 1411 | uintptr_t *cache_address = PERCPU_GET(brk_telemetry_cache_address); |
| 1412 | if (*cache_address == faulting_address) { |
| 1413 | return; |
| 1414 | } |
| 1415 | |
| 1416 | *cache_address = faulting_address; |
| 1417 | |
| 1418 | lck_spin_lock(lck: &ca_entries_lck); |
| 1419 | *in_handler = true; |
| 1420 | |
| 1421 | if (__improbable(ca_entries_index > CA_ENTRIES_SIZE)) { |
| 1422 | panic("Invalid CA interrupt buffer index %d >= %d" , |
| 1423 | ca_entries_index, CA_ENTRIES_SIZE); |
| 1424 | } |
| 1425 | |
| 1426 | /* We're full, just drop the event */ |
| 1427 | if (ca_entries_index == CA_ENTRIES_SIZE) { |
| 1428 | *in_handler = false; |
| 1429 | lck_spin_unlock(lck: &ca_entries_lck); |
| 1430 | return; |
| 1431 | } |
| 1432 | |
| 1433 | ca_entries[ca_entries_index].type = type; |
| 1434 | ca_entries[ca_entries_index].code = comment; |
| 1435 | ca_entries[ca_entries_index].faulting_address = faulting_address; |
| 1436 | |
| 1437 | assert(total_frames <= TELEMETRY_BT_FRAMES); |
| 1438 | |
| 1439 | if (total_frames <= TELEMETRY_BT_FRAMES) { |
| 1440 | ca_entries[ca_entries_index].num_frames = total_frames; |
| 1441 | memcpy(dst: ca_entries[ca_entries_index].frames, src: backtrace, |
| 1442 | n: total_frames * sizeof(uintptr_t)); |
| 1443 | } |
| 1444 | |
| 1445 | ca_entries_index++; |
| 1446 | |
| 1447 | *in_handler = false; |
| 1448 | lck_spin_unlock(lck: &ca_entries_lck); |
| 1449 | |
| 1450 | thread_call_enter(call: telemetry_ca_send_callout); |
| 1451 | } |
| 1452 | |
| 1453 | static int |
| 1454 | telemetry_backtrace_add_kernel( |
| 1455 | char *buf, |
| 1456 | size_t buflen) |
| 1457 | { |
| 1458 | int rc = 0; |
| 1459 | #if defined(__arm__) || defined(__arm64__) |
| 1460 | extern vm_offset_t segTEXTEXECB; |
| 1461 | extern unsigned long segSizeTEXTEXEC; |
| 1462 | vm_address_t unslid = segTEXTEXECB - vm_kernel_stext; |
| 1463 | |
| 1464 | rc += scnprintf(buf, buflen, "%s@%lx:%lx\n" , |
| 1465 | kernel_uuid_string, unslid, unslid + segSizeTEXTEXEC - 1); |
| 1466 | #elif defined(__x86_64__) |
| 1467 | rc += scnprintf(buf, buflen, "%s@0:%lx\n" , |
| 1468 | kernel_uuid_string, vm_kernel_etext - vm_kernel_stext); |
| 1469 | #else |
| 1470 | #pragma unused(buf, buflen) |
| 1471 | #endif |
| 1472 | return rc; |
| 1473 | } |
| 1474 | |
| 1475 | static void |
| 1476 | telemetry_backtrace_to_string( |
| 1477 | char *buf, |
| 1478 | size_t buflen, |
| 1479 | uint32_t tot, |
| 1480 | uintptr_t *frames) |
| 1481 | { |
| 1482 | size_t l = 0; |
| 1483 | |
| 1484 | for (uint32_t i = 0; i < tot; i++) { |
| 1485 | l += scnprintf(buf + l, buflen - l, "%lx\n" , |
| 1486 | frames[i] - vm_kernel_stext); |
| 1487 | } |
| 1488 | l += telemetry_backtrace_add_kernel(buf: buf + l, buflen: buflen - l); |
| 1489 | telemetry_backtrace_add_kexts(buf: buf + l, buflen: buflen - l, frames, framecnt: tot); |
| 1490 | } |
| 1491 | |
| 1492 | static void |
| 1493 | telemetry_flush_ca_events( |
| 1494 | __unused thread_call_param_t p0, |
| 1495 | __unused thread_call_param_t p1) |
| 1496 | { |
| 1497 | struct telemetry_ca_entry local_entries[CA_ENTRIES_SIZE] = {0}; |
| 1498 | uint8_t entry_cnt = 0; |
| 1499 | bool *in_handler = PERCPU_GET(brk_telemetry_in_handler); |
| 1500 | |
| 1501 | lck_spin_lock(lck: &ca_entries_lck); |
| 1502 | *in_handler = true; |
| 1503 | |
| 1504 | if (__improbable(ca_entries_index > CA_ENTRIES_SIZE)) { |
| 1505 | panic("Invalid CA interrupt buffer index %d > %d" , ca_entries_index, |
| 1506 | CA_ENTRIES_SIZE); |
| 1507 | } |
| 1508 | |
| 1509 | if (ca_entries_index == 0) { |
| 1510 | *in_handler = false; |
| 1511 | lck_spin_unlock(lck: &ca_entries_lck); |
| 1512 | return; |
| 1513 | } else { |
| 1514 | memcpy(dst: local_entries, src: ca_entries, n: sizeof(local_entries)); |
| 1515 | entry_cnt = ca_entries_index; |
| 1516 | ca_entries_index = 0; |
| 1517 | } |
| 1518 | |
| 1519 | *in_handler = false; |
| 1520 | lck_spin_unlock(lck: &ca_entries_lck); |
| 1521 | |
| 1522 | /* |
| 1523 | * All addresses (faulting_address and backtrace) are relative to the |
| 1524 | * vm_kernel_stext which means that all offsets will be typically <= |
| 1525 | * 50M which uses 7 hex digits. |
| 1526 | * |
| 1527 | * We allow up to TELEMETRY_BT_FRAMES (5) entries, |
| 1528 | * and be formatted like this: |
| 1529 | * |
| 1530 | * <OFFSET1>\n |
| 1531 | * <OFFSET2>\n |
| 1532 | * ... |
| 1533 | * <UUID_a>@<TEXT_EXEC_BASE_OFFSET>:<TEXT_EXEC_END_OFFSET>\n |
| 1534 | * <UUID_b>@<TEXT_EXEC_BASE_OFFSET>:<TEXT_EXEC_END_OFFSET>\n |
| 1535 | * ... |
| 1536 | * |
| 1537 | * In general this backtrace takes 8 bytes per "frame", |
| 1538 | * with an extra 52 bytes per unique UUID referenced. |
| 1539 | * |
| 1540 | * The buffer we have is CA_UBSANBUF_LEN (256 bytes) long, which |
| 1541 | * accomodates for 4 full unique UUIDs which should be sufficient. |
| 1542 | */ |
| 1543 | |
| 1544 | /* Send the events */ |
| 1545 | for (uint8_t i = 0; i < entry_cnt; i++) { |
| 1546 | ca_event_t ca_event = CA_EVENT_ALLOCATE(kernel_breakpoint_event); |
| 1547 | CA_EVENT_TYPE(kernel_breakpoint_event) * event = ca_event->data; |
| 1548 | |
| 1549 | event->brk_type = local_entries[i].type; |
| 1550 | event->brk_code = local_entries[i].code; |
| 1551 | event->faulting_address = local_entries[i].faulting_address; |
| 1552 | |
| 1553 | telemetry_backtrace_to_string(buf: event->backtrace, |
| 1554 | buflen: sizeof(event->backtrace), |
| 1555 | tot: local_entries[i].num_frames, |
| 1556 | frames: local_entries[i].frames); |
| 1557 | strlcpy(dst: event->uuid, src: kernel_uuid_string, CA_UUID_LEN); |
| 1558 | |
| 1559 | CA_EVENT_SEND(ca_event); |
| 1560 | } |
| 1561 | } |
| 1562 | |
| 1563 | void |
| 1564 | telemetry_kernel_brk( |
| 1565 | kernel_brk_type_t type, |
| 1566 | kernel_brk_options_t options, |
| 1567 | void *tstate, |
| 1568 | uint16_t ) |
| 1569 | { |
| 1570 | #if __arm64__ |
| 1571 | arm_saved_state_t *state = (arm_saved_state_t *)tstate; |
| 1572 | |
| 1573 | uintptr_t faulting_address = get_saved_state_pc(iss: state); |
| 1574 | uintptr_t saved_fp = get_saved_state_fp(iss: state); |
| 1575 | #else |
| 1576 | x86_saved_state64_t *state = (x86_saved_state64_t *)tstate; |
| 1577 | |
| 1578 | uintptr_t faulting_address = state->isf.rip; |
| 1579 | uintptr_t saved_fp = state->rbp; |
| 1580 | #endif |
| 1581 | |
| 1582 | assert(options & KERNEL_BRK_TELEMETRY_OPTIONS); |
| 1583 | |
| 1584 | if (startup_phase < STARTUP_SUB_THREAD_CALL) { |
| 1585 | #if DEVELOPMENT || DEBUG |
| 1586 | panic("Attempting kernel breakpoint telemetry in early boot." ); |
| 1587 | #endif |
| 1588 | return; |
| 1589 | } |
| 1590 | |
| 1591 | if (options & KERNEL_BRK_CORE_ANALYTICS) { |
| 1592 | uintptr_t frames[TELEMETRY_BT_FRAMES]; |
| 1593 | |
| 1594 | struct backtrace_control ctl = { |
| 1595 | .btc_frame_addr = (uintptr_t)saved_fp, |
| 1596 | }; |
| 1597 | |
| 1598 | uint32_t total_frames = backtrace(bt: frames, TELEMETRY_BT_FRAMES, ctl: &ctl, NULL); |
| 1599 | |
| 1600 | telemetry_stash_ca_event(type, comment, total_frames, |
| 1601 | backtrace: frames, faulting_address: faulting_address - vm_kernel_stext); |
| 1602 | } |
| 1603 | } |
| 1604 | |
| 1605 | /************************/ |
| 1606 | /* BOOT PROFILE SUPPORT */ |
| 1607 | /************************/ |
| 1608 | /* |
| 1609 | * Boot Profiling |
| 1610 | * |
| 1611 | * The boot-profiling support is a mechanism to sample activity happening on the |
| 1612 | * system during boot. This mechanism sets up a periodic timer and on every timer fire, |
| 1613 | * captures a full backtrace into the boot profiling buffer. This buffer can be pulled |
| 1614 | * out and analyzed from user-space. It is turned on using the following boot-args: |
| 1615 | * "bootprofile_buffer_size" specifies the size of the boot profile buffer |
| 1616 | * "bootprofile_interval_ms" specifies the interval for the profiling timer |
| 1617 | * |
| 1618 | * Process Specific Boot Profiling |
| 1619 | * |
| 1620 | * The boot-arg "bootprofile_proc_name" can be used to specify a certain |
| 1621 | * process that needs to profiled during boot. Setting this boot-arg changes |
| 1622 | * the way stackshots are captured. At every timer fire, the code looks at the |
| 1623 | * currently running process and takes a stackshot only if the requested process |
| 1624 | * is on-core (which makes it unsuitable for MP systems). |
| 1625 | * |
| 1626 | * Trigger Events |
| 1627 | * |
| 1628 | * The boot-arg "bootprofile_type=boot" starts the timer during early boot. Using |
| 1629 | * "wake" starts the timer at AP wake from suspend-to-RAM. |
| 1630 | */ |
| 1631 | |
| 1632 | #define BOOTPROFILE_MAX_BUFFER_SIZE (64*1024*1024) /* see also COPYSIZELIMIT_PANIC */ |
| 1633 | |
| 1634 | vm_offset_t bootprofile_buffer = 0; |
| 1635 | uint32_t bootprofile_buffer_size = 0; |
| 1636 | uint32_t bootprofile_buffer_current_position = 0; |
| 1637 | uint32_t bootprofile_interval_ms = 0; |
| 1638 | uint64_t bootprofile_stackshot_flags = 0; |
| 1639 | uint64_t bootprofile_interval_abs = 0; |
| 1640 | uint64_t bootprofile_next_deadline = 0; |
| 1641 | uint32_t bootprofile_all_procs = 0; |
| 1642 | char bootprofile_proc_name[17]; |
| 1643 | uint64_t bootprofile_delta_since_timestamp = 0; |
| 1644 | LCK_GRP_DECLARE(bootprofile_lck_grp, "bootprofile_group" ); |
| 1645 | LCK_MTX_DECLARE(bootprofile_mtx, &bootprofile_lck_grp); |
| 1646 | |
| 1647 | |
| 1648 | enum { |
| 1649 | kBootProfileDisabled = 0, |
| 1650 | kBootProfileStartTimerAtBoot, |
| 1651 | kBootProfileStartTimerAtWake |
| 1652 | } bootprofile_type = kBootProfileDisabled; |
| 1653 | |
| 1654 | |
| 1655 | static timer_call_data_t bootprofile_timer_call_entry; |
| 1656 | |
| 1657 | #define BOOTPROFILE_LOCK() do { lck_mtx_lock(&bootprofile_mtx); } while(0) |
| 1658 | #define BOOTPROFILE_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&bootprofile_mtx) |
| 1659 | #define BOOTPROFILE_UNLOCK() do { lck_mtx_unlock(&bootprofile_mtx); } while(0) |
| 1660 | |
| 1661 | static void bootprofile_timer_call( |
| 1662 | timer_call_param_t param0, |
| 1663 | timer_call_param_t param1); |
| 1664 | |
| 1665 | void |
| 1666 | bootprofile_init(void) |
| 1667 | { |
| 1668 | kern_return_t ret; |
| 1669 | char type[32]; |
| 1670 | |
| 1671 | if (!PE_parse_boot_argn(arg_string: "bootprofile_buffer_size" , |
| 1672 | arg_ptr: &bootprofile_buffer_size, max_arg: sizeof(bootprofile_buffer_size))) { |
| 1673 | bootprofile_buffer_size = 0; |
| 1674 | } |
| 1675 | |
| 1676 | if (bootprofile_buffer_size > BOOTPROFILE_MAX_BUFFER_SIZE) { |
| 1677 | bootprofile_buffer_size = BOOTPROFILE_MAX_BUFFER_SIZE; |
| 1678 | } |
| 1679 | |
| 1680 | if (!PE_parse_boot_argn(arg_string: "bootprofile_interval_ms" , |
| 1681 | arg_ptr: &bootprofile_interval_ms, max_arg: sizeof(bootprofile_interval_ms))) { |
| 1682 | bootprofile_interval_ms = 0; |
| 1683 | } |
| 1684 | |
| 1685 | if (!PE_parse_boot_argn(arg_string: "bootprofile_stackshot_flags" , |
| 1686 | arg_ptr: &bootprofile_stackshot_flags, max_arg: sizeof(bootprofile_stackshot_flags))) { |
| 1687 | bootprofile_stackshot_flags = 0; |
| 1688 | } |
| 1689 | |
| 1690 | if (!PE_parse_boot_argn(arg_string: "bootprofile_proc_name" , |
| 1691 | arg_ptr: &bootprofile_proc_name, max_arg: sizeof(bootprofile_proc_name))) { |
| 1692 | bootprofile_all_procs = 1; |
| 1693 | bootprofile_proc_name[0] = '\0'; |
| 1694 | } |
| 1695 | |
| 1696 | if (PE_parse_boot_argn(arg_string: "bootprofile_type" , arg_ptr: type, max_arg: sizeof(type))) { |
| 1697 | if (0 == strcmp(s1: type, s2: "boot" )) { |
| 1698 | bootprofile_type = kBootProfileStartTimerAtBoot; |
| 1699 | } else if (0 == strcmp(s1: type, s2: "wake" )) { |
| 1700 | bootprofile_type = kBootProfileStartTimerAtWake; |
| 1701 | } else { |
| 1702 | bootprofile_type = kBootProfileDisabled; |
| 1703 | } |
| 1704 | } else { |
| 1705 | bootprofile_type = kBootProfileDisabled; |
| 1706 | } |
| 1707 | |
| 1708 | clock_interval_to_absolutetime_interval(interval: bootprofile_interval_ms, NSEC_PER_MSEC, result: &bootprofile_interval_abs); |
| 1709 | |
| 1710 | /* Both boot args must be set to enable */ |
| 1711 | if ((bootprofile_type == kBootProfileDisabled) || (bootprofile_buffer_size == 0) || (bootprofile_interval_abs == 0)) { |
| 1712 | return; |
| 1713 | } |
| 1714 | |
| 1715 | ret = kmem_alloc(map: kernel_map, addrp: &bootprofile_buffer, size: bootprofile_buffer_size, |
| 1716 | flags: KMA_DATA | KMA_ZERO | KMA_PERMANENT, VM_KERN_MEMORY_DIAG); |
| 1717 | if (ret != KERN_SUCCESS) { |
| 1718 | kprintf(fmt: "Boot profile: Allocation failed: %d\n" , ret); |
| 1719 | return; |
| 1720 | } |
| 1721 | |
| 1722 | kprintf(fmt: "Boot profile: Sampling %s once per %u ms at %s\n" , |
| 1723 | bootprofile_all_procs ? "all procs" : bootprofile_proc_name, bootprofile_interval_ms, |
| 1724 | bootprofile_type == kBootProfileStartTimerAtBoot ? "boot" : (bootprofile_type == kBootProfileStartTimerAtWake ? "wake" : "unknown" )); |
| 1725 | |
| 1726 | timer_call_setup(call: &bootprofile_timer_call_entry, |
| 1727 | func: bootprofile_timer_call, |
| 1728 | NULL); |
| 1729 | |
| 1730 | if (bootprofile_type == kBootProfileStartTimerAtBoot) { |
| 1731 | bootprofile_next_deadline = mach_absolute_time() + bootprofile_interval_abs; |
| 1732 | timer_call_enter_with_leeway(call: &bootprofile_timer_call_entry, |
| 1733 | NULL, |
| 1734 | deadline: bootprofile_next_deadline, |
| 1735 | leeway: 0, |
| 1736 | TIMER_CALL_SYS_NORMAL, |
| 1737 | false); |
| 1738 | } |
| 1739 | } |
| 1740 | |
| 1741 | void |
| 1742 | bootprofile_wake_from_sleep(void) |
| 1743 | { |
| 1744 | if (bootprofile_type == kBootProfileStartTimerAtWake) { |
| 1745 | bootprofile_next_deadline = mach_absolute_time() + bootprofile_interval_abs; |
| 1746 | timer_call_enter_with_leeway(call: &bootprofile_timer_call_entry, |
| 1747 | NULL, |
| 1748 | deadline: bootprofile_next_deadline, |
| 1749 | leeway: 0, |
| 1750 | TIMER_CALL_SYS_NORMAL, |
| 1751 | false); |
| 1752 | } |
| 1753 | } |
| 1754 | |
| 1755 | |
| 1756 | static void |
| 1757 | bootprofile_timer_call( |
| 1758 | timer_call_param_t param0 __unused, |
| 1759 | timer_call_param_t param1 __unused) |
| 1760 | { |
| 1761 | unsigned retbytes = 0; |
| 1762 | int pid_to_profile = -1; |
| 1763 | |
| 1764 | if (!BOOTPROFILE_TRY_SPIN_LOCK()) { |
| 1765 | goto reprogram; |
| 1766 | } |
| 1767 | |
| 1768 | /* Check if process-specific boot profiling is turned on */ |
| 1769 | if (!bootprofile_all_procs) { |
| 1770 | /* |
| 1771 | * Since boot profiling initializes really early in boot, it is |
| 1772 | * possible that at this point, the task/proc is not initialized. |
| 1773 | * Nothing to do in that case. |
| 1774 | */ |
| 1775 | |
| 1776 | if ((current_task() != NULL) && (get_bsdtask_info(current_task()) != NULL) && |
| 1777 | (0 == strncmp(s1: bootprofile_proc_name, s2: proc_name_address(p: get_bsdtask_info(current_task())), n: 17))) { |
| 1778 | pid_to_profile = proc_selfpid(); |
| 1779 | } else { |
| 1780 | /* |
| 1781 | * Process-specific boot profiling requested but the on-core process is |
| 1782 | * something else. Nothing to do here. |
| 1783 | */ |
| 1784 | BOOTPROFILE_UNLOCK(); |
| 1785 | goto reprogram; |
| 1786 | } |
| 1787 | } |
| 1788 | |
| 1789 | /* initiate a stackshot with whatever portion of the buffer is left */ |
| 1790 | if (bootprofile_buffer_current_position < bootprofile_buffer_size) { |
| 1791 | uint64_t flags = STACKSHOT_KCDATA_FORMAT | STACKSHOT_TRYLOCK | STACKSHOT_SAVE_LOADINFO |
| 1792 | | STACKSHOT_GET_GLOBAL_MEM_STATS; |
| 1793 | #if defined(XNU_TARGET_OS_OSX) |
| 1794 | flags |= STACKSHOT_SAVE_KEXT_LOADINFO; |
| 1795 | #endif |
| 1796 | |
| 1797 | |
| 1798 | /* OR on flags specified in boot-args */ |
| 1799 | flags |= bootprofile_stackshot_flags; |
| 1800 | if ((flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) && (bootprofile_delta_since_timestamp == 0)) { |
| 1801 | /* Can't take deltas until the first one */ |
| 1802 | flags &= ~STACKSHOT_COLLECT_DELTA_SNAPSHOT; |
| 1803 | } |
| 1804 | |
| 1805 | uint64_t timestamp = 0; |
| 1806 | if (bootprofile_stackshot_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) { |
| 1807 | timestamp = mach_absolute_time(); |
| 1808 | } |
| 1809 | |
| 1810 | kern_return_t r = stack_snapshot_from_kernel( |
| 1811 | pid: pid_to_profile, buf: (void *)(bootprofile_buffer + bootprofile_buffer_current_position), |
| 1812 | size: bootprofile_buffer_size - bootprofile_buffer_current_position, |
| 1813 | flags, delta_since_timestamp: bootprofile_delta_since_timestamp, pagetable_mask: 0, bytes_traced: &retbytes); |
| 1814 | |
| 1815 | /* |
| 1816 | * We call with STACKSHOT_TRYLOCK because the stackshot lock is coarser |
| 1817 | * than the bootprofile lock. If someone else has the lock we'll just |
| 1818 | * try again later. |
| 1819 | */ |
| 1820 | |
| 1821 | if (r == KERN_LOCK_OWNED) { |
| 1822 | BOOTPROFILE_UNLOCK(); |
| 1823 | goto reprogram; |
| 1824 | } |
| 1825 | |
| 1826 | if (bootprofile_stackshot_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT && |
| 1827 | r == KERN_SUCCESS) { |
| 1828 | bootprofile_delta_since_timestamp = timestamp; |
| 1829 | } |
| 1830 | |
| 1831 | bootprofile_buffer_current_position += retbytes; |
| 1832 | } |
| 1833 | |
| 1834 | BOOTPROFILE_UNLOCK(); |
| 1835 | |
| 1836 | /* If we didn't get any data or have run out of buffer space, stop profiling */ |
| 1837 | if ((retbytes == 0) || (bootprofile_buffer_current_position == bootprofile_buffer_size)) { |
| 1838 | return; |
| 1839 | } |
| 1840 | |
| 1841 | |
| 1842 | reprogram: |
| 1843 | /* If the user gathered the buffer, no need to keep profiling */ |
| 1844 | if (bootprofile_interval_abs == 0) { |
| 1845 | return; |
| 1846 | } |
| 1847 | |
| 1848 | clock_deadline_for_periodic_event(interval: bootprofile_interval_abs, |
| 1849 | abstime: mach_absolute_time(), |
| 1850 | deadline: &bootprofile_next_deadline); |
| 1851 | timer_call_enter_with_leeway(call: &bootprofile_timer_call_entry, |
| 1852 | NULL, |
| 1853 | deadline: bootprofile_next_deadline, |
| 1854 | leeway: 0, |
| 1855 | TIMER_CALL_SYS_NORMAL, |
| 1856 | false); |
| 1857 | } |
| 1858 | |
| 1859 | void |
| 1860 | bootprofile_get(void **buffer, uint32_t *length) |
| 1861 | { |
| 1862 | BOOTPROFILE_LOCK(); |
| 1863 | *buffer = (void*) bootprofile_buffer; |
| 1864 | *length = bootprofile_buffer_current_position; |
| 1865 | BOOTPROFILE_UNLOCK(); |
| 1866 | } |
| 1867 | |
| 1868 | int |
| 1869 | bootprofile_gather(user_addr_t buffer, uint32_t *length) |
| 1870 | { |
| 1871 | int result = 0; |
| 1872 | |
| 1873 | BOOTPROFILE_LOCK(); |
| 1874 | |
| 1875 | if (bootprofile_buffer == 0) { |
| 1876 | *length = 0; |
| 1877 | goto out; |
| 1878 | } |
| 1879 | |
| 1880 | if (*length < bootprofile_buffer_current_position) { |
| 1881 | result = KERN_NO_SPACE; |
| 1882 | goto out; |
| 1883 | } |
| 1884 | |
| 1885 | if ((result = copyout((void *)bootprofile_buffer, buffer, |
| 1886 | bootprofile_buffer_current_position)) != 0) { |
| 1887 | *length = 0; |
| 1888 | goto out; |
| 1889 | } |
| 1890 | *length = bootprofile_buffer_current_position; |
| 1891 | |
| 1892 | /* cancel future timers */ |
| 1893 | bootprofile_interval_abs = 0; |
| 1894 | |
| 1895 | out: |
| 1896 | |
| 1897 | BOOTPROFILE_UNLOCK(); |
| 1898 | |
| 1899 | return result; |
| 1900 | } |
| 1901 | |