| 1 | /* |
| 2 | * Copyright (c) 2010-2020 Apple Computer, Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | |
| 32 | #include <kern/kern_types.h> |
| 33 | #include <kern/ledger.h> |
| 34 | #include <kern/kalloc.h> |
| 35 | #include <kern/task.h> |
| 36 | #include <kern/thread.h> |
| 37 | #include <kern/coalition.h> |
| 38 | |
| 39 | #include <kern/processor.h> |
| 40 | #include <kern/machine.h> |
| 41 | #include <kern/queue.h> |
| 42 | #include <kern/policy_internal.h> |
| 43 | |
| 44 | #include <sys/errno.h> |
| 45 | |
| 46 | #include <libkern/OSAtomic.h> |
| 47 | #include <mach/mach_types.h> |
| 48 | #include <os/overflow.h> |
| 49 | |
| 50 | #include <vm/pmap.h> |
| 51 | |
| 52 | /* |
| 53 | * Ledger entry flags. Bits in second nibble (masked by 0xF0) are used for |
| 54 | * ledger actions (LEDGER_ACTION_BLOCK, etc). |
| 55 | */ |
| 56 | #define LF_ENTRY_ACTIVE 0x0001 /* entry is active if set */ |
| 57 | #define LF_WAKE_NEEDED 0x0100 /* one or more threads are asleep */ |
| 58 | #define LF_WAKE_INPROGRESS 0x0200 /* the wait queue is being processed */ |
| 59 | #define LF_REFILL_SCHEDULED 0x0400 /* a refill timer has been set */ |
| 60 | #define LF_REFILL_INPROGRESS 0x0800 /* the ledger is being refilled */ |
| 61 | #define LF_CALLED_BACK 0x1000 /* callback was called for balance in deficit */ |
| 62 | #define LF_WARNED 0x2000 /* callback was called for balance warning */ |
| 63 | #define LF_TRACKING_MAX 0x4000 /* track max balance. Exclusive w.r.t refill */ |
| 64 | #define LF_PANIC_ON_NEGATIVE 0x8000 /* panic if it goes negative */ |
| 65 | #define LF_TRACK_CREDIT_ONLY 0x10000 /* only update "credit" */ |
| 66 | #define LF_DIAG_WARNED 0x20000 /* callback was called for balance diag */ |
| 67 | #define LF_DIAG_DISABLED 0x40000 /* diagnostics threshold are disabled at the moment */ |
| 68 | |
| 69 | |
| 70 | /* |
| 71 | * Ledger entry IDs are actually a tuple of (size, offset). |
| 72 | * For backwards compatibility, they're stored in an int. |
| 73 | * Size is stored in the upper 16 bits, and offset is stored in the lower 16 bits. |
| 74 | * |
| 75 | * Use the ENTRY_ID_SIZE and ENTRY_ID_OFFSET macros to extract size and offset. |
| 76 | */ |
| 77 | #define ENTRY_ID_SIZE_SHIFT 16 |
| 78 | #define ENTRY_ID_OFFSET_MASK ((1 << ENTRY_ID_SIZE_SHIFT) - 1) |
| 79 | #define ENTRY_ID_OFFSET(x) ((x) & (ENTRY_ID_OFFSET_MASK)) |
| 80 | #define ENTRY_ID_SIZE_MASK (ENTRY_ID_OFFSET_MASK << ENTRY_ID_SIZE_SHIFT) |
| 81 | #define ENTRY_ID_SIZE(x) ((((uint32_t) (x)) & (ENTRY_ID_SIZE_MASK)) >> ENTRY_ID_SIZE_SHIFT) |
| 82 | _Static_assert(((sizeof(struct ledger_entry_small) << ENTRY_ID_SIZE_SHIFT) | (UINT16_MAX / sizeof(struct ledger_entry_small))) > 0, "Valid ledger index < 0" ); |
| 83 | _Static_assert(((sizeof(struct ledger_entry) << ENTRY_ID_SIZE_SHIFT) | (UINT16_MAX / sizeof(struct ledger_entry_small))) > 0, "Valid ledger index < 0" ); |
| 84 | _Static_assert(sizeof(int) * 8 >= ENTRY_ID_SIZE_SHIFT * 2, "Ledger indices don't fit in an int." ); |
| 85 | #define MAX_LEDGER_ENTRIES (UINT16_MAX / sizeof(struct ledger_entry_small)) |
| 86 | |
| 87 | #define LEDGER_DIAG_MEM_THRESHOLD_SHIFT 20 |
| 88 | #define LEDGER_DIAG_MEM_AMOUNT_TO_THRESHOLD(X) ((X) >> (LEDGER_DIAG_MEM_THRESHOLD_SHIFT)) |
| 89 | #define LEDGER_DIAG_MEM_AMOUNT_FROM_THRESHOLD(X) (((ledger_amount_t)(X)) << (LEDGER_DIAG_MEM_THRESHOLD_SHIFT)) |
| 90 | |
| 91 | /* These features can fit in a small ledger entry. All others require a full size ledger entry */ |
| 92 | #define LEDGER_ENTRY_SMALL_FLAGS (LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE | LEDGER_ENTRY_ALLOW_INACTIVE) |
| 93 | |
| 94 | /* Turn on to debug invalid ledger accesses */ |
| 95 | #if MACH_ASSERT |
| 96 | #define PANIC_ON_INVALID_LEDGER_ACCESS 1 |
| 97 | #endif /* MACH_ASSERT */ |
| 98 | |
| 99 | static inline volatile uint32_t * |
| 100 | get_entry_flags(ledger_t l, int index) |
| 101 | { |
| 102 | assert(l != NULL); |
| 103 | |
| 104 | uint16_t size, offset; |
| 105 | size = ENTRY_ID_SIZE(index); |
| 106 | offset = ENTRY_ID_OFFSET(index); |
| 107 | struct ledger_entry_small *les = &l->l_entries[offset]; |
| 108 | if (size == sizeof(struct ledger_entry)) { |
| 109 | return &((struct ledger_entry *)les)->le_flags; |
| 110 | } else if (size == sizeof(struct ledger_entry_small)) { |
| 111 | return &les->les_flags; |
| 112 | } else { |
| 113 | panic("Unknown ledger entry size! ledger=%p, index=0x%x, entry_size=%d\n" , l, index, size); |
| 114 | } |
| 115 | } |
| 116 | |
| 117 | #if PANIC_ON_INVALID_LEDGER_ACCESS |
| 118 | #define INVALID_LEDGER_ACCESS(l, e) if ((e) != -1) panic("Invalid ledger access: ledger=%p, entry=0x%x, entry_size=0x%x, entry_offset=0x%x\n", \ |
| 119 | (l), (e), (ENTRY_ID_SIZE((e))), ENTRY_ID_OFFSET((e))); |
| 120 | #else |
| 121 | #define INVALID_LEDGER_ACCESS(l, e) |
| 122 | #endif /* PANIC_ON_INVALID_LEDGER_ACCESS */ |
| 123 | |
| 124 | /* Determine whether a ledger entry exists */ |
| 125 | static inline bool |
| 126 | is_entry_valid(ledger_t l, int entry) |
| 127 | { |
| 128 | uint32_t size, offset, end_offset; |
| 129 | size = ENTRY_ID_SIZE(entry); |
| 130 | offset = ENTRY_ID_OFFSET(entry); |
| 131 | if (l == NULL) { |
| 132 | return false; |
| 133 | } |
| 134 | if (os_mul_overflow(offset, sizeof(struct ledger_entry_small), &offset) || offset >= l->l_size) { |
| 135 | INVALID_LEDGER_ACCESS(l, entry); |
| 136 | return false; |
| 137 | } |
| 138 | if (os_add_overflow(size, offset, &end_offset) || end_offset > l->l_size) { |
| 139 | INVALID_LEDGER_ACCESS(l, entry); |
| 140 | return false; |
| 141 | } |
| 142 | return true; |
| 143 | } |
| 144 | |
| 145 | static inline bool |
| 146 | is_entry_active(ledger_t l, int entry) |
| 147 | { |
| 148 | uint32_t flags = *get_entry_flags(l, index: entry); |
| 149 | if ((flags & LF_ENTRY_ACTIVE) != LF_ENTRY_ACTIVE) { |
| 150 | return false; |
| 151 | } |
| 152 | |
| 153 | return true; |
| 154 | } |
| 155 | |
| 156 | static inline bool |
| 157 | is_entry_valid_and_active(ledger_t l, int entry) |
| 158 | { |
| 159 | return is_entry_valid(l, entry) && is_entry_active(l, entry); |
| 160 | } |
| 161 | |
| 162 | #define ASSERT(a) assert(a) |
| 163 | |
| 164 | #ifdef LEDGER_DEBUG |
| 165 | int ledger_debug = 0; |
| 166 | |
| 167 | #define lprintf(a) if (ledger_debug) { \ |
| 168 | printf("%lld ", abstime_to_nsecs(mach_absolute_time() / 1000000)); \ |
| 169 | printf a ; \ |
| 170 | } |
| 171 | #else |
| 172 | #define lprintf(a) |
| 173 | #endif |
| 174 | |
| 175 | struct ledger_callback { |
| 176 | ledger_callback_t lc_func; |
| 177 | const void *lc_param0; |
| 178 | const void *lc_param1; |
| 179 | }; |
| 180 | |
| 181 | struct entry_template { |
| 182 | char et_key[LEDGER_NAME_MAX]; |
| 183 | char et_group[LEDGER_NAME_MAX]; |
| 184 | char et_units[LEDGER_NAME_MAX]; |
| 185 | uint32_t et_flags; |
| 186 | uint16_t et_size; |
| 187 | uint16_t et_offset; |
| 188 | struct ledger_callback *et_callback; |
| 189 | }; |
| 190 | |
| 191 | LCK_GRP_DECLARE(ledger_lck_grp, "ledger" ); |
| 192 | os_refgrp_decl(static, ledger_refgrp, "ledger" , NULL); |
| 193 | |
| 194 | /* |
| 195 | * Modifying the reference count, table size, table contents, lt_next_offset, or lt_entries_lut, |
| 196 | * requires holding the lt_lock. Modfying the table address requires both |
| 197 | * lt_lock and setting the inuse bit. This means that the lt_entries field can |
| 198 | * be safely dereferenced if you hold either the lock or the inuse bit. The |
| 199 | * inuse bit exists solely to allow us to swap in a new, larger entries |
| 200 | * table without requiring a full lock to be acquired on each lookup. |
| 201 | * Accordingly, the inuse bit should never be held for longer than it takes |
| 202 | * to extract a value from the table - i.e., 2 or 3 memory references. |
| 203 | */ |
| 204 | struct ledger_template { |
| 205 | const char *lt_name; |
| 206 | int lt_refs; |
| 207 | volatile uint32_t lt_inuse; |
| 208 | lck_mtx_t lt_lock; |
| 209 | zone_t lt_zone; |
| 210 | bool lt_initialized; |
| 211 | uint16_t lt_next_offset; |
| 212 | uint16_t lt_cnt; |
| 213 | uint16_t lt_table_size; |
| 214 | struct entry_template *lt_entries; |
| 215 | /* Lookup table to go from entry_offset to index in the lt_entries table. */ |
| 216 | uint16_t *lt_entries_lut; |
| 217 | }; |
| 218 | |
| 219 | static inline uint16_t |
| 220 | ledger_template_entries_lut_size(uint16_t lt_table_size) |
| 221 | { |
| 222 | /* |
| 223 | * The lookup table needs to be big enough to store lt_table_size entries of the largest |
| 224 | * entry size (struct ledger_entry) given a stride of the smallest entry size (struct ledger_entry_small) |
| 225 | */ |
| 226 | if (os_mul_overflow(lt_table_size, (sizeof(struct ledger_entry) / sizeof(struct ledger_entry_small)), <_table_size)) { |
| 227 | /* |
| 228 | * This means MAX_LEDGER_ENTRIES is misconfigured or |
| 229 | * someone has accidently passed in an lt_table_size that is > MAX_LEDGER_ENTRIES |
| 230 | */ |
| 231 | panic("Attempt to create a lookup table for a ledger template with too many entries. lt_table_size=%u, MAX_LEDGER_ENTRIES=%lu\n" , lt_table_size, MAX_LEDGER_ENTRIES); |
| 232 | } |
| 233 | return lt_table_size; |
| 234 | } |
| 235 | |
| 236 | #define template_lock(template) lck_mtx_lock(&(template)->lt_lock) |
| 237 | #define template_unlock(template) lck_mtx_unlock(&(template)->lt_lock) |
| 238 | |
| 239 | #define TEMPLATE_INUSE(s, t) { \ |
| 240 | s = splsched(); \ |
| 241 | while (OSCompareAndSwap(0, 1, &((t)->lt_inuse))) \ |
| 242 | ; \ |
| 243 | } |
| 244 | |
| 245 | #define TEMPLATE_IDLE(s, t) { \ |
| 246 | (t)->lt_inuse = 0; \ |
| 247 | splx(s); \ |
| 248 | } |
| 249 | |
| 250 | static int ledger_cnt = 0; |
| 251 | /* ledger ast helper functions */ |
| 252 | static uint32_t ledger_check_needblock(ledger_t l, uint64_t now); |
| 253 | static kern_return_t ledger_perform_blocking(ledger_t l); |
| 254 | static uint32_t flag_set(volatile uint32_t *flags, uint32_t bit); |
| 255 | static uint32_t flag_clear(volatile uint32_t *flags, uint32_t bit); |
| 256 | |
| 257 | static void ledger_entry_check_new_balance(thread_t thread, ledger_t ledger, |
| 258 | int entry); |
| 259 | #if DEBUG || DEVELOPMENT |
| 260 | static inline bool ledger_is_diag_threshold_enabled_internal(struct ledger_entry *le); |
| 261 | #endif |
| 262 | #if 0 |
| 263 | static void |
| 264 | debug_callback(const void *p0, __unused const void *p1) |
| 265 | { |
| 266 | printf("ledger: resource exhausted [%s] for task %p\n" , |
| 267 | (const char *)p0, p1); |
| 268 | } |
| 269 | #endif |
| 270 | |
| 271 | /************************************/ |
| 272 | |
| 273 | static uint64_t |
| 274 | abstime_to_nsecs(uint64_t abstime) |
| 275 | { |
| 276 | uint64_t nsecs; |
| 277 | |
| 278 | absolutetime_to_nanoseconds(abstime, result: &nsecs); |
| 279 | return nsecs; |
| 280 | } |
| 281 | |
| 282 | static uint64_t |
| 283 | nsecs_to_abstime(uint64_t nsecs) |
| 284 | { |
| 285 | uint64_t abstime; |
| 286 | |
| 287 | nanoseconds_to_absolutetime(nanoseconds: nsecs, result: &abstime); |
| 288 | return abstime; |
| 289 | } |
| 290 | |
| 291 | static const uint16_t * |
| 292 | ledger_entry_to_template_idx(ledger_template_t template, int index) |
| 293 | { |
| 294 | uint16_t offset = ENTRY_ID_OFFSET(index); |
| 295 | if (offset / sizeof(struct ledger_entry_small) >= template->lt_cnt) { |
| 296 | return NULL; |
| 297 | } |
| 298 | |
| 299 | return &template->lt_entries_lut[offset]; |
| 300 | } |
| 301 | |
| 302 | /* |
| 303 | * Convert the id to a ledger entry. |
| 304 | * It's the callers responsibility to ensure the id is valid and a full size |
| 305 | * ledger entry. |
| 306 | */ |
| 307 | static struct ledger_entry * |
| 308 | ledger_entry_identifier_to_entry(ledger_t ledger, int id) |
| 309 | { |
| 310 | assert(is_entry_valid(ledger, id)); |
| 311 | assert(ENTRY_ID_SIZE(id) == sizeof(struct ledger_entry)); |
| 312 | return (struct ledger_entry *) &ledger->l_entries[ENTRY_ID_OFFSET(id)]; |
| 313 | } |
| 314 | |
| 315 | |
| 316 | ledger_template_t |
| 317 | ledger_template_create(const char *name) |
| 318 | { |
| 319 | ledger_template_t template; |
| 320 | |
| 321 | template = kalloc_type(struct ledger_template, Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 322 | template->lt_name = name; |
| 323 | template->lt_refs = 1; |
| 324 | template->lt_table_size = 1; |
| 325 | lck_mtx_init(lck: &template->lt_lock, grp: &ledger_lck_grp, LCK_ATTR_NULL); |
| 326 | |
| 327 | template->lt_entries = kalloc_type(struct entry_template, |
| 328 | template->lt_table_size, Z_WAITOK | Z_ZERO); |
| 329 | if (template->lt_entries == NULL) { |
| 330 | kfree_type(struct ledger_template, template); |
| 331 | template = NULL; |
| 332 | } |
| 333 | template->lt_entries_lut = kalloc_type(uint16_t, ledger_template_entries_lut_size(template->lt_table_size), |
| 334 | Z_WAITOK | Z_ZERO); |
| 335 | if (template->lt_entries_lut == NULL) { |
| 336 | kfree_type(struct entry_template, template->lt_entries); |
| 337 | kfree_type(struct ledger_template, template); |
| 338 | template = NULL; |
| 339 | } |
| 340 | |
| 341 | return template; |
| 342 | } |
| 343 | |
| 344 | ledger_template_t |
| 345 | ledger_template_copy(ledger_template_t template, const char *name) |
| 346 | { |
| 347 | struct entry_template * new_entries = NULL; |
| 348 | uint16_t *new_entries_lut = NULL; |
| 349 | size_t new_entries_lut_size = 0; |
| 350 | ledger_template_t new_template = ledger_template_create(name); |
| 351 | |
| 352 | if (new_template == NULL) { |
| 353 | return new_template; |
| 354 | } |
| 355 | |
| 356 | template_lock(template); |
| 357 | assert(template->lt_initialized); |
| 358 | |
| 359 | new_entries = kalloc_type(struct entry_template, template->lt_table_size, |
| 360 | Z_WAITOK | Z_ZERO); |
| 361 | |
| 362 | if (new_entries == NULL) { |
| 363 | /* Tear down the new template; we've failed. :( */ |
| 364 | ledger_template_dereference(template: new_template); |
| 365 | new_template = NULL; |
| 366 | goto out; |
| 367 | } |
| 368 | new_entries_lut_size = ledger_template_entries_lut_size(lt_table_size: template->lt_table_size); |
| 369 | |
| 370 | new_entries_lut = kalloc_type(uint16_t, new_entries_lut_size, |
| 371 | Z_WAITOK | Z_ZERO); |
| 372 | if (new_entries_lut == NULL) { |
| 373 | /* Tear down the new template; we've failed. :( */ |
| 374 | ledger_template_dereference(template: new_template); |
| 375 | new_template = NULL; |
| 376 | goto out; |
| 377 | } |
| 378 | |
| 379 | /* Copy the template entries. */ |
| 380 | bcopy(src: template->lt_entries, dst: new_entries, n: sizeof(struct entry_template) * template->lt_table_size); |
| 381 | kfree_type(struct entry_template, new_template->lt_table_size, new_template->lt_entries); |
| 382 | /* Copy the look up table. */ |
| 383 | bcopy(src: template->lt_entries_lut, dst: new_entries_lut, n: sizeof(uint16_t) * new_entries_lut_size); |
| 384 | kfree_type(uint16_t, ledger_template_entries_lut_size(new_template->lt_table_size), new_template->lt_entries_lut); |
| 385 | |
| 386 | new_template->lt_entries = new_entries; |
| 387 | new_template->lt_table_size = template->lt_table_size; |
| 388 | new_template->lt_cnt = template->lt_cnt; |
| 389 | new_template->lt_next_offset = template->lt_next_offset; |
| 390 | new_template->lt_entries_lut = new_entries_lut; |
| 391 | |
| 392 | out: |
| 393 | template_unlock(template); |
| 394 | |
| 395 | return new_template; |
| 396 | } |
| 397 | |
| 398 | void |
| 399 | ledger_template_dereference(ledger_template_t template) |
| 400 | { |
| 401 | template_lock(template); |
| 402 | template->lt_refs--; |
| 403 | template_unlock(template); |
| 404 | |
| 405 | if (template->lt_refs == 0) { |
| 406 | kfree_type(struct entry_template, template->lt_table_size, template->lt_entries); |
| 407 | kfree_type(uint16_t, ledger_template_entries_lut_size(template->lt_table_size), template->lt_entries_lut); |
| 408 | lck_mtx_destroy(lck: &template->lt_lock, grp: &ledger_lck_grp); |
| 409 | if (template->lt_zone) { |
| 410 | zdestroy(zone: template->lt_zone); |
| 411 | } |
| 412 | kfree_type(struct ledger_template, template); |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | static inline int |
| 417 | ledger_entry_id(uint16_t size, uint16_t offset) |
| 418 | { |
| 419 | int idx = offset; |
| 420 | idx |= (size << ENTRY_ID_SIZE_SHIFT); |
| 421 | assert(idx >= 0); |
| 422 | return idx; |
| 423 | } |
| 424 | |
| 425 | static inline int |
| 426 | ledger_entry_id_from_template_entry(const struct entry_template *et) |
| 427 | { |
| 428 | return ledger_entry_id(size: et->et_size, offset: et->et_offset); |
| 429 | } |
| 430 | |
| 431 | int |
| 432 | ledger_entry_add_with_flags(ledger_template_t template, const char *key, |
| 433 | const char *group, const char *units, uint64_t flags) |
| 434 | { |
| 435 | uint16_t template_idx; |
| 436 | struct entry_template *et; |
| 437 | uint16_t size = 0, next_offset = 0, entry_idx = 0; |
| 438 | |
| 439 | if ((key == NULL) || (strlen(s: key) >= LEDGER_NAME_MAX) || (template->lt_zone != NULL)) { |
| 440 | return -1; |
| 441 | } |
| 442 | |
| 443 | template_lock(template); |
| 444 | |
| 445 | /* Make sure we have space for this entry */ |
| 446 | if (template->lt_cnt == MAX_LEDGER_ENTRIES) { |
| 447 | template_unlock(template); |
| 448 | return -1; |
| 449 | } |
| 450 | |
| 451 | /* If the table is full, attempt to double its size */ |
| 452 | if (template->lt_cnt == template->lt_table_size) { |
| 453 | struct entry_template *new_entries, *old_entries; |
| 454 | uint16_t *new_entries_lut = NULL, *old_entries_lut = NULL; |
| 455 | uint16_t old_cnt, new_cnt; |
| 456 | spl_t s; |
| 457 | |
| 458 | old_cnt = template->lt_table_size; |
| 459 | /* double old_sz allocation, but check for overflow */ |
| 460 | if (os_mul_overflow(old_cnt, 2, &new_cnt)) { |
| 461 | template_unlock(template); |
| 462 | return -1; |
| 463 | } |
| 464 | |
| 465 | if (new_cnt > MAX_LEDGER_ENTRIES) { |
| 466 | template_unlock(template); |
| 467 | panic("Attempt to create a ledger template with more than MAX_LEDGER_ENTRIES. MAX_LEDGER_ENTRIES=%lu, old_cnt=%u, new_cnt=%u\n" , MAX_LEDGER_ENTRIES, old_cnt, new_cnt); |
| 468 | } |
| 469 | |
| 470 | new_entries = kalloc_type(struct entry_template, new_cnt, |
| 471 | Z_WAITOK | Z_ZERO); |
| 472 | if (new_entries == NULL) { |
| 473 | template_unlock(template); |
| 474 | return -1; |
| 475 | } |
| 476 | new_entries_lut = kalloc_type(uint16_t, ledger_template_entries_lut_size(new_cnt), |
| 477 | Z_WAITOK | Z_ZERO); |
| 478 | if (new_entries_lut == NULL) { |
| 479 | template_unlock(template); |
| 480 | kfree_type(struct entry_template, new_cnt, new_entries); |
| 481 | return -1; |
| 482 | } |
| 483 | |
| 484 | memcpy(dst: new_entries, src: template->lt_entries, |
| 485 | n: old_cnt * sizeof(struct entry_template)); |
| 486 | template->lt_table_size = new_cnt; |
| 487 | |
| 488 | memcpy(dst: new_entries_lut, src: template->lt_entries_lut, |
| 489 | n: ledger_template_entries_lut_size(lt_table_size: old_cnt) * sizeof(uint16_t)); |
| 490 | |
| 491 | old_entries = template->lt_entries; |
| 492 | old_entries_lut = template->lt_entries_lut; |
| 493 | |
| 494 | TEMPLATE_INUSE(s, template); |
| 495 | template->lt_entries = new_entries; |
| 496 | template->lt_entries_lut = new_entries_lut; |
| 497 | TEMPLATE_IDLE(s, template); |
| 498 | |
| 499 | kfree_type(struct entry_template, old_cnt, old_entries); |
| 500 | kfree_type(uint16_t, ledger_template_entries_lut_size(old_cnt), old_entries_lut); |
| 501 | } |
| 502 | |
| 503 | et = &template->lt_entries[template->lt_cnt]; |
| 504 | strlcpy(dst: et->et_key, src: key, LEDGER_NAME_MAX); |
| 505 | strlcpy(dst: et->et_group, src: group, LEDGER_NAME_MAX); |
| 506 | strlcpy(dst: et->et_units, src: units, LEDGER_NAME_MAX); |
| 507 | et->et_flags = LF_ENTRY_ACTIVE; |
| 508 | /* |
| 509 | * Currently we only have two types of variable sized entries |
| 510 | * CREDIT_ONLY and full-fledged leger_entry. |
| 511 | * In the future, we can add more gradations based on the flags. |
| 512 | */ |
| 513 | if ((flags & ~(LEDGER_ENTRY_SMALL_FLAGS)) == 0) { |
| 514 | size = sizeof(struct ledger_entry_small); |
| 515 | et->et_flags |= LF_TRACK_CREDIT_ONLY; |
| 516 | } else { |
| 517 | size = sizeof(struct ledger_entry); |
| 518 | } |
| 519 | et->et_size = size; |
| 520 | et->et_offset = (template->lt_next_offset / sizeof(struct ledger_entry_small)); |
| 521 | et->et_callback = NULL; |
| 522 | |
| 523 | template_idx = template->lt_cnt++; |
| 524 | next_offset = template->lt_next_offset; |
| 525 | entry_idx = next_offset / sizeof(struct ledger_entry_small); |
| 526 | template->lt_next_offset += size; |
| 527 | assert(template->lt_next_offset > next_offset); |
| 528 | template->lt_entries_lut[entry_idx] = template_idx; |
| 529 | template_unlock(template); |
| 530 | |
| 531 | return ledger_entry_id(size, offset: entry_idx); |
| 532 | } |
| 533 | |
| 534 | /* |
| 535 | * Add a new entry to the list of entries in a ledger template. There is |
| 536 | * currently no mechanism to remove an entry. Implementing such a mechanism |
| 537 | * would require us to maintain per-entry reference counts, which we would |
| 538 | * prefer to avoid if possible. |
| 539 | */ |
| 540 | int |
| 541 | ledger_entry_add(ledger_template_t template, const char *key, |
| 542 | const char *group, const char *units) |
| 543 | { |
| 544 | /* |
| 545 | * When using the legacy interface we have to be pessimistic |
| 546 | * and allocate memory for all of the features. |
| 547 | */ |
| 548 | return ledger_entry_add_with_flags(template, key, group, units, |
| 549 | flags: LEDGER_ENTRY_ALLOW_CALLBACK | LEDGER_ENTRY_ALLOW_MAXIMUM | |
| 550 | LEDGER_ENTRY_ALLOW_DEBIT | LEDGER_ENTRY_ALLOW_LIMIT | |
| 551 | LEDGER_ENTRY_ALLOW_ACTION | LEDGER_ENTRY_ALLOW_INACTIVE); |
| 552 | } |
| 553 | |
| 554 | |
| 555 | kern_return_t |
| 556 | ledger_entry_setactive(ledger_t ledger, int entry) |
| 557 | { |
| 558 | volatile uint32_t *flags = NULL; |
| 559 | |
| 560 | if (!is_entry_valid(l: ledger, entry)) { |
| 561 | return KERN_INVALID_ARGUMENT; |
| 562 | } |
| 563 | |
| 564 | flags = get_entry_flags(l: ledger, index: entry); |
| 565 | |
| 566 | if ((*flags & LF_ENTRY_ACTIVE) == 0) { |
| 567 | flag_set(flags, LF_ENTRY_ACTIVE); |
| 568 | } |
| 569 | return KERN_SUCCESS; |
| 570 | } |
| 571 | |
| 572 | |
| 573 | int |
| 574 | ledger_key_lookup(ledger_template_t template, const char *key) |
| 575 | { |
| 576 | int id = -1; |
| 577 | struct entry_template *et = NULL; |
| 578 | |
| 579 | template_lock(template); |
| 580 | if (template->lt_entries != NULL) { |
| 581 | for (uint16_t idx = 0; idx < template->lt_cnt; idx++) { |
| 582 | et = &template->lt_entries[idx]; |
| 583 | if (strcmp(s1: key, s2: et->et_key) == 0) { |
| 584 | id = ledger_entry_id(size: et->et_size, offset: et->et_offset); |
| 585 | break; |
| 586 | } |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | template_unlock(template); |
| 591 | |
| 592 | return id; |
| 593 | } |
| 594 | |
| 595 | /* |
| 596 | * Complete the initialization of ledger template |
| 597 | * by initializing ledger zone. After initializing |
| 598 | * the ledger zone, adding an entry in the ledger |
| 599 | * template will fail. |
| 600 | */ |
| 601 | void |
| 602 | ledger_template_complete(ledger_template_t template) |
| 603 | { |
| 604 | size_t ledger_size; |
| 605 | ledger_size = sizeof(struct ledger) + template->lt_next_offset; |
| 606 | assert(ledger_size > sizeof(struct ledger)); |
| 607 | template->lt_zone = zone_create(name: template->lt_name, size: ledger_size, |
| 608 | flags: ZC_PGZ_USE_GUARDS | ZC_DESTRUCTIBLE); |
| 609 | template->lt_initialized = true; |
| 610 | } |
| 611 | |
| 612 | /* |
| 613 | * Like ledger_template_complete, except we'll ask |
| 614 | * the pmap layer to manage allocations for us. |
| 615 | * Meant for ledgers that should be owned by the |
| 616 | * pmap layer. |
| 617 | */ |
| 618 | void |
| 619 | ledger_template_complete_secure_alloc(ledger_template_t template) |
| 620 | { |
| 621 | size_t ledger_size; |
| 622 | ledger_size = sizeof(struct ledger) + template->lt_next_offset; |
| 623 | |
| 624 | /** |
| 625 | * Ensure that the amount of space being allocated by the PPL for each |
| 626 | * ledger is large enough. |
| 627 | */ |
| 628 | pmap_ledger_verify_size(ledger_size); |
| 629 | template->lt_initialized = true; |
| 630 | } |
| 631 | |
| 632 | /* |
| 633 | * Create a new ledger based on the specified template. As part of the |
| 634 | * ledger creation we need to allocate space for a table of ledger entries. |
| 635 | * The size of the table is based on the size of the template at the time |
| 636 | * the ledger is created. If additional entries are added to the template |
| 637 | * after the ledger is created, they will not be tracked in this ledger. |
| 638 | */ |
| 639 | ledger_t |
| 640 | ledger_instantiate(ledger_template_t template, int entry_type) |
| 641 | { |
| 642 | ledger_t ledger; |
| 643 | uint16_t entries_size; |
| 644 | uint16_t num_entries; |
| 645 | uint16_t i; |
| 646 | |
| 647 | template_lock(template); |
| 648 | template->lt_refs++; |
| 649 | entries_size = template->lt_next_offset; |
| 650 | num_entries = template->lt_cnt; |
| 651 | template_unlock(template); |
| 652 | |
| 653 | if (template->lt_zone) { |
| 654 | ledger = (ledger_t)zalloc(zone: template->lt_zone); |
| 655 | } else { |
| 656 | /** |
| 657 | * If the template doesn't contain a zone to allocate ledger objects |
| 658 | * from, then assume that these ledger objects should be allocated by |
| 659 | * the pmap. This is done on PPL-enabled systems to give the PPL a |
| 660 | * method of validating ledger objects when updating them from within |
| 661 | * the PPL. |
| 662 | */ |
| 663 | ledger = pmap_ledger_alloc(); |
| 664 | } |
| 665 | |
| 666 | if (ledger == NULL) { |
| 667 | ledger_template_dereference(template); |
| 668 | return LEDGER_NULL; |
| 669 | } |
| 670 | |
| 671 | ledger->l_template = template; |
| 672 | ledger->l_id = ledger_cnt++; |
| 673 | os_ref_init(&ledger->l_refs, &ledger_refgrp); |
| 674 | assert(entries_size > 0); |
| 675 | ledger->l_size = (uint16_t) entries_size; |
| 676 | |
| 677 | template_lock(template); |
| 678 | assert(ledger->l_size <= template->lt_next_offset); |
| 679 | for (i = 0; i < num_entries; i++) { |
| 680 | uint16_t size, offset; |
| 681 | struct entry_template *et = &template->lt_entries[i]; |
| 682 | size = et->et_size; |
| 683 | offset = et->et_offset; |
| 684 | assert(offset < ledger->l_size); |
| 685 | |
| 686 | struct ledger_entry_small *les = &ledger->l_entries[offset]; |
| 687 | if (size == sizeof(struct ledger_entry)) { |
| 688 | struct ledger_entry *le = (struct ledger_entry *) les; |
| 689 | |
| 690 | le->le_flags = et->et_flags; |
| 691 | /* make entry inactive by removing active bit */ |
| 692 | if (entry_type == LEDGER_CREATE_INACTIVE_ENTRIES) { |
| 693 | flag_clear(flags: &le->le_flags, LF_ENTRY_ACTIVE); |
| 694 | } |
| 695 | /* |
| 696 | * If template has a callback, this entry is opted-in, |
| 697 | * by default. |
| 698 | */ |
| 699 | if (et->et_callback != NULL) { |
| 700 | flag_set(flags: &le->le_flags, LEDGER_ACTION_CALLBACK); |
| 701 | } |
| 702 | le->le_credit = 0; |
| 703 | le->le_debit = 0; |
| 704 | le->le_limit = LEDGER_LIMIT_INFINITY; |
| 705 | le->le_warn_percent = LEDGER_PERCENT_NONE; |
| 706 | le->le_diag_threshold_scaled = LEDGER_DIAG_MEM_THRESHOLD_INFINITY; |
| 707 | le->_le.le_refill.le_refill_period = 0; |
| 708 | le->_le.le_refill.le_last_refill = 0; |
| 709 | } else { |
| 710 | les->les_flags = et->et_flags; |
| 711 | les->les_credit = 0; |
| 712 | } |
| 713 | } |
| 714 | template_unlock(template); |
| 715 | |
| 716 | return ledger; |
| 717 | } |
| 718 | |
| 719 | static uint32_t |
| 720 | flag_set(volatile uint32_t *flags, uint32_t bit) |
| 721 | { |
| 722 | return OSBitOrAtomic(bit, flags); |
| 723 | } |
| 724 | |
| 725 | static uint32_t |
| 726 | flag_clear(volatile uint32_t *flags, uint32_t bit) |
| 727 | { |
| 728 | return OSBitAndAtomic(~bit, flags); |
| 729 | } |
| 730 | |
| 731 | /* |
| 732 | * Take a reference on a ledger |
| 733 | */ |
| 734 | void |
| 735 | ledger_reference(ledger_t ledger) |
| 736 | { |
| 737 | if (!LEDGER_VALID(ledger)) { |
| 738 | return; |
| 739 | } |
| 740 | |
| 741 | os_ref_retain(rc: &ledger->l_refs); |
| 742 | } |
| 743 | |
| 744 | /* |
| 745 | * Remove a reference on a ledger. If this is the last reference, |
| 746 | * deallocate the unused ledger. |
| 747 | */ |
| 748 | void |
| 749 | ledger_dereference(ledger_t ledger) |
| 750 | { |
| 751 | if (!LEDGER_VALID(ledger)) { |
| 752 | return; |
| 753 | } |
| 754 | |
| 755 | if (os_ref_release(rc: &ledger->l_refs) == 0) { |
| 756 | ledger_template_t template = ledger->l_template; |
| 757 | if (template->lt_zone) { |
| 758 | zfree(template->lt_zone, ledger); |
| 759 | } else { |
| 760 | /** |
| 761 | * If the template doesn't contain a zone to allocate ledger objects |
| 762 | * from, then assume that these ledger objects were allocated by the |
| 763 | * pmap. This is done on PPL-enabled systems to give the PPL a |
| 764 | * method of validating ledger objects when updating them from |
| 765 | * within the PPL. |
| 766 | */ |
| 767 | pmap_ledger_free(ledger); |
| 768 | } |
| 769 | ledger_template_dereference(template); |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | /* |
| 774 | * Determine whether an entry has exceeded its warning level. |
| 775 | */ |
| 776 | static inline bool |
| 777 | warn_level_exceeded(struct ledger_entry *le) |
| 778 | { |
| 779 | ledger_amount_t balance; |
| 780 | |
| 781 | if (le->le_flags & LF_TRACK_CREDIT_ONLY) { |
| 782 | assert(le->le_debit == 0); |
| 783 | } else { |
| 784 | assert((le->le_credit >= 0) && (le->le_debit >= 0)); |
| 785 | } |
| 786 | |
| 787 | /* |
| 788 | * XXX - Currently, we only support warnings for ledgers which |
| 789 | * use positive limits. |
| 790 | */ |
| 791 | balance = le->le_credit - le->le_debit; |
| 792 | if (le->le_warn_percent != LEDGER_PERCENT_NONE && |
| 793 | ((balance > (le->le_limit * le->le_warn_percent) >> 16))) { |
| 794 | return true; |
| 795 | } |
| 796 | return false; |
| 797 | } |
| 798 | #if DEBUG || DEVELOPMENT |
| 799 | |
| 800 | /* |
| 801 | * Determine whether an entry has exceeded its diag mem threshold level. |
| 802 | */ |
| 803 | static inline bool |
| 804 | diag_mem_threshold_exceeded(struct ledger_entry *le) |
| 805 | { |
| 806 | ledger_amount_t balance; |
| 807 | ledger_amount_t diag_mem_threshold; |
| 808 | |
| 809 | if ((le->le_diag_threshold_scaled != LEDGER_DIAG_MEM_THRESHOLD_INFINITY) && (ledger_is_diag_threshold_enabled_internal(le) == true)) { |
| 810 | if (le->le_flags & LF_TRACK_CREDIT_ONLY) { |
| 811 | assert(le->le_debit == 0); |
| 812 | } else { |
| 813 | assert((le->le_credit >= 0) && (le->le_debit >= 0)); |
| 814 | } |
| 815 | |
| 816 | diag_mem_threshold = LEDGER_DIAG_MEM_AMOUNT_FROM_THRESHOLD(le->le_diag_threshold_scaled); |
| 817 | balance = le->le_credit - le->le_debit; |
| 818 | if ((diag_mem_threshold <= 0) && (balance < diag_mem_threshold)) { |
| 819 | return 1; |
| 820 | } |
| 821 | if ((diag_mem_threshold > 0) && (balance > diag_mem_threshold)) { |
| 822 | return 1; |
| 823 | } |
| 824 | } |
| 825 | return 0; |
| 826 | } |
| 827 | #endif |
| 828 | /* |
| 829 | * Determine whether an entry has exceeded its limit. |
| 830 | */ |
| 831 | static inline bool |
| 832 | limit_exceeded(struct ledger_entry *le) |
| 833 | { |
| 834 | ledger_amount_t balance; |
| 835 | |
| 836 | if (le->le_flags & LF_TRACK_CREDIT_ONLY) { |
| 837 | assert(le->le_debit == 0); |
| 838 | } else { |
| 839 | assert((le->le_credit >= 0) && (le->le_debit >= 0)); |
| 840 | } |
| 841 | |
| 842 | balance = le->le_credit - le->le_debit; |
| 843 | if ((le->le_limit <= 0) && (balance < le->le_limit)) { |
| 844 | return true; |
| 845 | } |
| 846 | |
| 847 | if ((le->le_limit > 0) && (balance > le->le_limit)) { |
| 848 | return true; |
| 849 | } |
| 850 | return false; |
| 851 | } |
| 852 | |
| 853 | static inline struct ledger_callback * |
| 854 | entry_get_callback(ledger_t ledger, int entry) |
| 855 | { |
| 856 | struct ledger_callback *callback = NULL; |
| 857 | spl_t s; |
| 858 | const uint16_t *ledger_template_idx_p = NULL; |
| 859 | |
| 860 | TEMPLATE_INUSE(s, ledger->l_template); |
| 861 | ledger_template_idx_p = ledger_entry_to_template_idx(template: ledger->l_template, index: entry); |
| 862 | if (ledger_template_idx_p != NULL) { |
| 863 | callback = ledger->l_template->lt_entries[*ledger_template_idx_p].et_callback; |
| 864 | } |
| 865 | TEMPLATE_IDLE(s, ledger->l_template); |
| 866 | |
| 867 | return callback; |
| 868 | } |
| 869 | |
| 870 | /* |
| 871 | * If the ledger value is positive, wake up anybody waiting on it. |
| 872 | */ |
| 873 | static inline void |
| 874 | ledger_limit_entry_wakeup(struct ledger_entry *le) |
| 875 | { |
| 876 | uint32_t flags; |
| 877 | |
| 878 | if (!limit_exceeded(le)) { |
| 879 | flags = flag_clear(flags: &le->le_flags, LF_CALLED_BACK); |
| 880 | |
| 881 | while (le->le_flags & LF_WAKE_NEEDED) { |
| 882 | flag_clear(flags: &le->le_flags, LF_WAKE_NEEDED); |
| 883 | thread_wakeup((event_t)le); |
| 884 | } |
| 885 | } |
| 886 | } |
| 887 | |
| 888 | /* |
| 889 | * Refill the coffers. |
| 890 | */ |
| 891 | static void |
| 892 | ledger_refill(uint64_t now, ledger_t ledger, int entry) |
| 893 | { |
| 894 | uint64_t elapsed, period, periods; |
| 895 | struct ledger_entry *le; |
| 896 | ledger_amount_t balance, due; |
| 897 | |
| 898 | if (!is_entry_valid(l: ledger, entry)) { |
| 899 | return; |
| 900 | } |
| 901 | |
| 902 | if (ENTRY_ID_SIZE(entry) != sizeof(struct ledger_entry)) { |
| 903 | /* Small entries can't do refills */ |
| 904 | return; |
| 905 | } |
| 906 | |
| 907 | le = ledger_entry_identifier_to_entry(ledger, id: entry); |
| 908 | |
| 909 | assert(le->le_limit != LEDGER_LIMIT_INFINITY); |
| 910 | |
| 911 | if (le->le_flags & LF_TRACK_CREDIT_ONLY) { |
| 912 | assert(le->le_debit == 0); |
| 913 | return; |
| 914 | } |
| 915 | |
| 916 | /* |
| 917 | * If another thread is handling the refill already, we're not |
| 918 | * needed. |
| 919 | */ |
| 920 | if (flag_set(flags: &le->le_flags, LF_REFILL_INPROGRESS) & LF_REFILL_INPROGRESS) { |
| 921 | return; |
| 922 | } |
| 923 | |
| 924 | /* |
| 925 | * If the timestamp we're about to use to refill is older than the |
| 926 | * last refill, then someone else has already refilled this ledger |
| 927 | * and there's nothing for us to do here. |
| 928 | */ |
| 929 | if (now <= le->_le.le_refill.le_last_refill) { |
| 930 | flag_clear(flags: &le->le_flags, LF_REFILL_INPROGRESS); |
| 931 | return; |
| 932 | } |
| 933 | |
| 934 | /* |
| 935 | * See how many refill periods have passed since we last |
| 936 | * did a refill. |
| 937 | */ |
| 938 | period = le->_le.le_refill.le_refill_period; |
| 939 | elapsed = now - le->_le.le_refill.le_last_refill; |
| 940 | if ((period == 0) || (elapsed < period)) { |
| 941 | flag_clear(flags: &le->le_flags, LF_REFILL_INPROGRESS); |
| 942 | return; |
| 943 | } |
| 944 | |
| 945 | /* |
| 946 | * Optimize for the most common case of only one or two |
| 947 | * periods elapsing. |
| 948 | */ |
| 949 | periods = 0; |
| 950 | while ((periods < 2) && (elapsed > 0)) { |
| 951 | periods++; |
| 952 | elapsed -= period; |
| 953 | } |
| 954 | |
| 955 | /* |
| 956 | * OK, it's been a long time. Do a divide to figure out |
| 957 | * how long. |
| 958 | */ |
| 959 | if (elapsed > 0) { |
| 960 | periods = (now - le->_le.le_refill.le_last_refill) / period; |
| 961 | } |
| 962 | |
| 963 | balance = le->le_credit - le->le_debit; |
| 964 | due = periods * le->le_limit; |
| 965 | |
| 966 | if (balance - due < 0) { |
| 967 | due = balance; |
| 968 | } |
| 969 | |
| 970 | if (due < 0 && (le->le_flags & LF_PANIC_ON_NEGATIVE)) { |
| 971 | assertf(due >= 0, "now=%llu, ledger=%p, entry=%d, balance=%lld, due=%lld" , now, ledger, entry, balance, due); |
| 972 | } else { |
| 973 | OSAddAtomic64(due, &le->le_debit); |
| 974 | assert(le->le_debit >= 0); |
| 975 | } |
| 976 | /* |
| 977 | * If we've completely refilled the pool, set the refill time to now. |
| 978 | * Otherwise set it to the time at which it last should have been |
| 979 | * fully refilled. |
| 980 | */ |
| 981 | if (balance == due) { |
| 982 | le->_le.le_refill.le_last_refill = now; |
| 983 | } else { |
| 984 | le->_le.le_refill.le_last_refill += (le->_le.le_refill.le_refill_period * periods); |
| 985 | } |
| 986 | |
| 987 | flag_clear(flags: &le->le_flags, LF_REFILL_INPROGRESS); |
| 988 | |
| 989 | lprintf(("Refill %lld %lld->%lld\n" , periods, balance, balance - due)); |
| 990 | if (!limit_exceeded(le)) { |
| 991 | ledger_limit_entry_wakeup(le); |
| 992 | } |
| 993 | } |
| 994 | |
| 995 | void |
| 996 | ledger_entry_check_new_balance(thread_t thread, ledger_t ledger, |
| 997 | int entry) |
| 998 | { |
| 999 | uint16_t size, offset; |
| 1000 | struct ledger_entry *le = NULL; |
| 1001 | struct ledger_entry_small *les = NULL; |
| 1002 | if (!is_entry_valid(l: ledger, entry)) { |
| 1003 | return; |
| 1004 | } |
| 1005 | size = ENTRY_ID_SIZE(entry); |
| 1006 | offset = ENTRY_ID_OFFSET(entry); |
| 1007 | les = &ledger->l_entries[offset]; |
| 1008 | if (size == sizeof(struct ledger_entry_small)) { |
| 1009 | if ((les->les_flags & LF_PANIC_ON_NEGATIVE) && les->les_credit < 0) { |
| 1010 | panic("ledger_entry_check_new_balance(%p,%d): negative ledger %p credit:%lld debit:0 balance:%lld" , |
| 1011 | ledger, entry, les, |
| 1012 | les->les_credit, |
| 1013 | les->les_credit); |
| 1014 | } |
| 1015 | } else if (size == sizeof(struct ledger_entry)) { |
| 1016 | le = (struct ledger_entry *)les; |
| 1017 | if (le->le_flags & LF_TRACKING_MAX) { |
| 1018 | ledger_amount_t balance = le->le_credit - le->le_debit; |
| 1019 | |
| 1020 | if (balance > le->_le._le_max.le_lifetime_max) { |
| 1021 | le->_le._le_max.le_lifetime_max = balance; |
| 1022 | } |
| 1023 | |
| 1024 | #if CONFIG_LEDGER_INTERVAL_MAX |
| 1025 | if (balance > le->_le._le_max.le_interval_max) { |
| 1026 | le->_le._le_max.le_interval_max = balance; |
| 1027 | } |
| 1028 | #endif /* LEDGER_CONFIG_INTERVAL_MAX */ |
| 1029 | } |
| 1030 | |
| 1031 | /* Check to see whether we're due a refill */ |
| 1032 | if (le->le_flags & LF_REFILL_SCHEDULED) { |
| 1033 | assert(!(le->le_flags & LF_TRACKING_MAX)); |
| 1034 | |
| 1035 | uint64_t now = mach_absolute_time(); |
| 1036 | if ((now - le->_le.le_refill.le_last_refill) > le->_le.le_refill.le_refill_period) { |
| 1037 | ledger_refill(now, ledger, entry); |
| 1038 | } |
| 1039 | } |
| 1040 | |
| 1041 | if (limit_exceeded(le)) { |
| 1042 | /* |
| 1043 | * We've exceeded the limit for this entry. There |
| 1044 | * are several possible ways to handle it. We can block, |
| 1045 | * we can execute a callback, or we can ignore it. In |
| 1046 | * either of the first two cases, we want to set the AST |
| 1047 | * flag so we can take the appropriate action just before |
| 1048 | * leaving the kernel. The one caveat is that if we have |
| 1049 | * already called the callback, we don't want to do it |
| 1050 | * again until it gets rearmed. |
| 1051 | */ |
| 1052 | if ((le->le_flags & LEDGER_ACTION_BLOCK) || |
| 1053 | (!(le->le_flags & LF_CALLED_BACK) && |
| 1054 | entry_get_callback(ledger, entry))) { |
| 1055 | act_set_astledger_async(thread); |
| 1056 | } |
| 1057 | } else { |
| 1058 | /* |
| 1059 | * The balance on the account is below the limit. |
| 1060 | * |
| 1061 | * If there are any threads blocked on this entry, now would |
| 1062 | * be a good time to wake them up. |
| 1063 | */ |
| 1064 | if (le->le_flags & LF_WAKE_NEEDED) { |
| 1065 | ledger_limit_entry_wakeup(le); |
| 1066 | } |
| 1067 | |
| 1068 | if (le->le_flags & LEDGER_ACTION_CALLBACK) { |
| 1069 | if (warn_level_exceeded(le)) { |
| 1070 | /* |
| 1071 | * This ledger's balance is above the warning level. |
| 1072 | */ |
| 1073 | if ((le->le_flags & LF_WARNED) == 0) { |
| 1074 | /* |
| 1075 | * If we are above the warning level and |
| 1076 | * have not yet invoked the callback, |
| 1077 | * set the AST so it can be done before returning |
| 1078 | * to userland. |
| 1079 | */ |
| 1080 | act_set_astledger_async(thread); |
| 1081 | } |
| 1082 | } else { |
| 1083 | /* |
| 1084 | * This ledger's balance is below the warning level. |
| 1085 | */ |
| 1086 | if (le->le_flags & LF_WARNED) { |
| 1087 | /* |
| 1088 | * If we are below the warning level and |
| 1089 | * the LF_WARNED flag is still set, we need |
| 1090 | * to invoke the callback to let the client |
| 1091 | * know the ledger balance is now back below |
| 1092 | * the warning level. |
| 1093 | */ |
| 1094 | act_set_astledger_async(thread); |
| 1095 | } |
| 1096 | } |
| 1097 | } |
| 1098 | } |
| 1099 | #if DEBUG || DEVELOPMENT |
| 1100 | if (diag_mem_threshold_exceeded(le)) { |
| 1101 | /* |
| 1102 | * Even if the limit is below the threshold, we may be interested |
| 1103 | * in diagnostics limits. Lets process them if the ast is not |
| 1104 | * invoked |
| 1105 | */ |
| 1106 | if ((le->le_flags & LF_DIAG_WARNED) == 0) { |
| 1107 | act_set_astledger_async(thread); |
| 1108 | } |
| 1109 | } |
| 1110 | #endif |
| 1111 | if ((le->le_flags & LF_PANIC_ON_NEGATIVE) && |
| 1112 | (le->le_credit < le->le_debit)) { |
| 1113 | panic("ledger_entry_check_new_balance(%p,%d): negative ledger %p credit:%lld debit:%lld balance:%lld" , |
| 1114 | ledger, entry, le, |
| 1115 | le->le_credit, |
| 1116 | le->le_debit, |
| 1117 | le->le_credit - le->le_debit); |
| 1118 | } |
| 1119 | } else { |
| 1120 | panic("Unknown ledger entry size! ledger=%p, entry=0x%x, entry_size=%d\n" , ledger, entry, size); |
| 1121 | } |
| 1122 | } |
| 1123 | |
| 1124 | void |
| 1125 | ledger_check_new_balance(thread_t thread, ledger_t ledger, int entry) |
| 1126 | { |
| 1127 | ledger_entry_check_new_balance(thread, ledger, entry); |
| 1128 | } |
| 1129 | |
| 1130 | /* |
| 1131 | * Add value to an entry in a ledger for a specific thread. |
| 1132 | */ |
| 1133 | kern_return_t |
| 1134 | ledger_credit_thread(thread_t thread, ledger_t ledger, int entry, ledger_amount_t amount) |
| 1135 | { |
| 1136 | ledger_amount_t old, new; |
| 1137 | struct ledger_entry *le; |
| 1138 | uint16_t entry_size = ENTRY_ID_SIZE(entry); |
| 1139 | |
| 1140 | if (!is_entry_valid_and_active(l: ledger, entry) || (amount < 0)) { |
| 1141 | return KERN_INVALID_VALUE; |
| 1142 | } |
| 1143 | |
| 1144 | if (amount == 0) { |
| 1145 | return KERN_SUCCESS; |
| 1146 | } |
| 1147 | |
| 1148 | if (entry_size == sizeof(struct ledger_entry_small)) { |
| 1149 | struct ledger_entry_small *les = &ledger->l_entries[ENTRY_ID_OFFSET(entry)]; |
| 1150 | old = OSAddAtomic64(amount, &les->les_credit); |
| 1151 | new = old + amount; |
| 1152 | } else if (entry_size == sizeof(struct ledger_entry)) { |
| 1153 | le = ledger_entry_identifier_to_entry(ledger, id: entry); |
| 1154 | |
| 1155 | old = OSAddAtomic64(amount, &le->le_credit); |
| 1156 | new = old + amount; |
| 1157 | } else { |
| 1158 | panic("Unknown ledger entry size! ledger=%p, entry=0x%x, entry_size=%d\n" , ledger, entry, entry_size); |
| 1159 | } |
| 1160 | |
| 1161 | lprintf(("%p Credit %lld->%lld\n" , thread, old, new)); |
| 1162 | if (thread) { |
| 1163 | ledger_entry_check_new_balance(thread, ledger, entry); |
| 1164 | } |
| 1165 | |
| 1166 | return KERN_SUCCESS; |
| 1167 | } |
| 1168 | |
| 1169 | /* |
| 1170 | * Add value to an entry in a ledger. |
| 1171 | */ |
| 1172 | kern_return_t |
| 1173 | ledger_credit(ledger_t ledger, int entry, ledger_amount_t amount) |
| 1174 | { |
| 1175 | return ledger_credit_thread(thread: current_thread(), ledger, entry, amount); |
| 1176 | } |
| 1177 | |
| 1178 | /* |
| 1179 | * Add value to an entry in a ledger; do not check balance after update. |
| 1180 | */ |
| 1181 | kern_return_t |
| 1182 | ledger_credit_nocheck(ledger_t ledger, int entry, ledger_amount_t amount) |
| 1183 | { |
| 1184 | return ledger_credit_thread(NULL, ledger, entry, amount); |
| 1185 | } |
| 1186 | |
| 1187 | /* Add all of one ledger's values into another. |
| 1188 | * They must have been created from the same template. |
| 1189 | * This is not done atomically. Another thread (if not otherwise synchronized) |
| 1190 | * may see bogus values when comparing one entry to another. |
| 1191 | * As each entry's credit & debit are modified one at a time, the warning/limit |
| 1192 | * may spuriously trip, or spuriously fail to trip, or another thread (if not |
| 1193 | * otherwise synchronized) may see a bogus balance. |
| 1194 | */ |
| 1195 | kern_return_t |
| 1196 | ledger_rollup(ledger_t to_ledger, ledger_t from_ledger) |
| 1197 | { |
| 1198 | int id; |
| 1199 | ledger_template_t template = NULL; |
| 1200 | struct entry_template *et = NULL; |
| 1201 | |
| 1202 | assert(to_ledger->l_template->lt_cnt == from_ledger->l_template->lt_cnt); |
| 1203 | template = from_ledger->l_template; |
| 1204 | assert(template->lt_initialized); |
| 1205 | |
| 1206 | for (uint16_t i = 0; i < template->lt_cnt; i++) { |
| 1207 | et = &template->lt_entries[i]; |
| 1208 | uint16_t size = et->et_size; |
| 1209 | id = ledger_entry_id(size, offset: et->et_offset); |
| 1210 | ledger_rollup_entry(to_ledger, from_ledger, entry: id); |
| 1211 | } |
| 1212 | |
| 1213 | return KERN_SUCCESS; |
| 1214 | } |
| 1215 | |
| 1216 | /* Add one ledger entry value to another. |
| 1217 | * They must have been created from the same template. |
| 1218 | * Since the credit and debit values are added one |
| 1219 | * at a time, other thread might read the a bogus value. |
| 1220 | */ |
| 1221 | kern_return_t |
| 1222 | ledger_rollup_entry(ledger_t to_ledger, ledger_t from_ledger, int entry) |
| 1223 | { |
| 1224 | struct ledger_entry_small *from_les, *to_les; |
| 1225 | uint16_t entry_size, entry_offset; |
| 1226 | entry_size = ENTRY_ID_SIZE(entry); |
| 1227 | entry_offset = ENTRY_ID_OFFSET(entry); |
| 1228 | |
| 1229 | assert(to_ledger->l_template->lt_cnt == from_ledger->l_template->lt_cnt); |
| 1230 | if (is_entry_valid(l: from_ledger, entry) && is_entry_valid(l: to_ledger, entry)) { |
| 1231 | from_les = &from_ledger->l_entries[entry_offset]; |
| 1232 | to_les = &to_ledger->l_entries[entry_offset]; |
| 1233 | if (entry_size == sizeof(struct ledger_entry)) { |
| 1234 | struct ledger_entry *from = (struct ledger_entry *)from_les; |
| 1235 | struct ledger_entry *to = (struct ledger_entry *)to_les; |
| 1236 | OSAddAtomic64(from->le_credit, &to->le_credit); |
| 1237 | OSAddAtomic64(from->le_debit, &to->le_debit); |
| 1238 | } else if (entry_size == sizeof(struct ledger_entry_small)) { |
| 1239 | OSAddAtomic64(from_les->les_credit, &to_les->les_credit); |
| 1240 | } else { |
| 1241 | panic("Unknown ledger entry size! ledger=%p, entry=0x%x, entry_size=%d\n" , from_ledger, entry, entry_size); |
| 1242 | } |
| 1243 | } |
| 1244 | |
| 1245 | return KERN_SUCCESS; |
| 1246 | } |
| 1247 | |
| 1248 | /* |
| 1249 | * Zero the balance of a ledger by adding to its credit or debit, whichever is smaller. |
| 1250 | * Note that some clients of ledgers (notably, task wakeup statistics) require that |
| 1251 | * le_credit only ever increase as a function of ledger_credit(). |
| 1252 | */ |
| 1253 | kern_return_t |
| 1254 | ledger_zero_balance(ledger_t ledger, int entry) |
| 1255 | { |
| 1256 | struct ledger_entry *le; |
| 1257 | struct ledger_entry_small *les; |
| 1258 | ledger_amount_t debit, credit; |
| 1259 | uint16_t entry_size, entry_offset; |
| 1260 | entry_size = ENTRY_ID_SIZE(entry); |
| 1261 | entry_offset = ENTRY_ID_OFFSET(entry); |
| 1262 | |
| 1263 | if (!is_entry_valid_and_active(l: ledger, entry)) { |
| 1264 | return KERN_INVALID_VALUE; |
| 1265 | } |
| 1266 | |
| 1267 | les = &ledger->l_entries[entry_offset]; |
| 1268 | if (entry_size == sizeof(struct ledger_entry_small)) { |
| 1269 | while (true) { |
| 1270 | credit = les->les_credit; |
| 1271 | if (OSCompareAndSwap64(credit, 0, &les->les_credit)) { |
| 1272 | break; |
| 1273 | } |
| 1274 | } |
| 1275 | } else if (entry_size == sizeof(struct ledger_entry)) { |
| 1276 | le = (struct ledger_entry *)les; |
| 1277 | top: |
| 1278 | debit = le->le_debit; |
| 1279 | credit = le->le_credit; |
| 1280 | |
| 1281 | if (le->le_flags & LF_TRACK_CREDIT_ONLY) { |
| 1282 | assert(le->le_debit == 0); |
| 1283 | if (!OSCompareAndSwap64(credit, 0, &le->le_credit)) { |
| 1284 | goto top; |
| 1285 | } |
| 1286 | lprintf(("%p zeroed %lld->%lld\n" , current_thread(), le->le_credit, 0)); |
| 1287 | } else if (credit > debit) { |
| 1288 | if (!OSCompareAndSwap64(debit, credit, &le->le_debit)) { |
| 1289 | goto top; |
| 1290 | } |
| 1291 | lprintf(("%p zeroed %lld->%lld\n" , current_thread(), le->le_debit, le->le_credit)); |
| 1292 | } else if (credit < debit) { |
| 1293 | if (!OSCompareAndSwap64(credit, debit, &le->le_credit)) { |
| 1294 | goto top; |
| 1295 | } |
| 1296 | lprintf(("%p zeroed %lld->%lld\n" , current_thread(), le->le_credit, le->le_debit)); |
| 1297 | } |
| 1298 | } else { |
| 1299 | panic("Unknown ledger entry size! ledger=%p, entry=0x%x, entry_size=%d\n" , ledger, entry, entry_size); |
| 1300 | } |
| 1301 | |
| 1302 | return KERN_SUCCESS; |
| 1303 | } |
| 1304 | |
| 1305 | kern_return_t |
| 1306 | ledger_get_limit(ledger_t ledger, int entry, ledger_amount_t *limit) |
| 1307 | { |
| 1308 | struct ledger_entry *le; |
| 1309 | |
| 1310 | if (!is_entry_valid_and_active(l: ledger, entry)) { |
| 1311 | return KERN_INVALID_VALUE; |
| 1312 | } |
| 1313 | |
| 1314 | if (ENTRY_ID_SIZE(entry) != sizeof(struct ledger_entry)) { |
| 1315 | /* Small entries can't have limits */ |
| 1316 | *limit = LEDGER_LIMIT_INFINITY; |
| 1317 | } else { |
| 1318 | le = ledger_entry_identifier_to_entry(ledger, id: entry); |
| 1319 | *limit = le->le_limit; |
| 1320 | } |
| 1321 | |
| 1322 | lprintf(("ledger_get_limit: %lld\n" , *limit)); |
| 1323 | |
| 1324 | return KERN_SUCCESS; |
| 1325 | } |
| 1326 | |
| 1327 | /* |
| 1328 | * Adjust the limit of a limited resource. This does not affect the |
| 1329 | * current balance, so the change doesn't affect the thread until the |
| 1330 | * next refill. |
| 1331 | * |
| 1332 | * warn_level: If non-zero, causes the callback to be invoked when |
| 1333 | * the balance exceeds this level. Specified as a percentage [of the limit]. |
| 1334 | */ |
| 1335 | kern_return_t |
| 1336 | ledger_set_limit(ledger_t ledger, int entry, ledger_amount_t limit, |
| 1337 | uint8_t warn_level_percentage) |
| 1338 | { |
| 1339 | struct ledger_entry *le; |
| 1340 | |
| 1341 | if (!is_entry_valid_and_active(l: ledger, entry)) { |
| 1342 | return KERN_INVALID_VALUE; |
| 1343 | } |
| 1344 | |
| 1345 | if (ENTRY_ID_SIZE(entry) != sizeof(struct ledger_entry)) { |
| 1346 | /* Small entries can't have limits */ |
| 1347 | return KERN_INVALID_ARGUMENT; |
| 1348 | } |
| 1349 | |
| 1350 | lprintf(("ledger_set_limit: %lld\n" , limit)); |
| 1351 | le = ledger_entry_identifier_to_entry(ledger, id: entry); |
| 1352 | |
| 1353 | if (limit == LEDGER_LIMIT_INFINITY) { |
| 1354 | /* |
| 1355 | * Caller wishes to disable the limit. This will implicitly |
| 1356 | * disable automatic refill, as refills implicitly depend |
| 1357 | * on the limit. |
| 1358 | */ |
| 1359 | ledger_disable_refill(l: ledger, entry); |
| 1360 | } |
| 1361 | |
| 1362 | le->le_limit = limit; |
| 1363 | if (le->le_flags & LF_REFILL_SCHEDULED) { |
| 1364 | assert(!(le->le_flags & LF_TRACKING_MAX)); |
| 1365 | le->_le.le_refill.le_last_refill = 0; |
| 1366 | } |
| 1367 | flag_clear(flags: &le->le_flags, LF_CALLED_BACK); |
| 1368 | flag_clear(flags: &le->le_flags, LF_WARNED); |
| 1369 | ledger_limit_entry_wakeup(le); |
| 1370 | |
| 1371 | if (warn_level_percentage != 0) { |
| 1372 | assert(warn_level_percentage <= 100); |
| 1373 | assert(limit > 0); /* no negative limit support for warnings */ |
| 1374 | assert(limit != LEDGER_LIMIT_INFINITY); /* warn % without limit makes no sense */ |
| 1375 | le->le_warn_percent = warn_level_percentage * (1u << 16) / 100; |
| 1376 | } else { |
| 1377 | le->le_warn_percent = LEDGER_PERCENT_NONE; |
| 1378 | } |
| 1379 | |
| 1380 | return KERN_SUCCESS; |
| 1381 | } |
| 1382 | |
| 1383 | #if CONFIG_LEDGER_INTERVAL_MAX |
| 1384 | kern_return_t |
| 1385 | ledger_get_interval_max(ledger_t ledger, int entry, |
| 1386 | ledger_amount_t *max_interval_balance, int reset) |
| 1387 | { |
| 1388 | kern_return_t kr = KERN_SUCCESS; |
| 1389 | struct ledger_entry *le; |
| 1390 | |
| 1391 | if (!is_entry_valid_and_active(l: ledger, entry)) { |
| 1392 | return KERN_INVALID_VALUE; |
| 1393 | } |
| 1394 | |
| 1395 | if (ENTRY_ID_SIZE(entry) != sizeof(struct ledger_entry)) { |
| 1396 | /* Small entries can't track max */ |
| 1397 | return KERN_INVALID_ARGUMENT; |
| 1398 | } |
| 1399 | |
| 1400 | le = ledger_entry_identifier_to_entry(ledger, id: entry); |
| 1401 | |
| 1402 | if (!(le->le_flags & LF_TRACKING_MAX)) { |
| 1403 | return KERN_INVALID_VALUE; |
| 1404 | } |
| 1405 | |
| 1406 | *max_interval_balance = le->_le._le_max.le_interval_max; |
| 1407 | lprintf(("ledger_get_interval_max: %lld%s\n" , *max_interval_balance, |
| 1408 | (reset) ? " --> 0" : "" )); |
| 1409 | |
| 1410 | if (reset) { |
| 1411 | kr = ledger_get_balance(ledger, entry, balance: &le->_le._le_max.le_interval_max); |
| 1412 | } |
| 1413 | |
| 1414 | return kr; |
| 1415 | } |
| 1416 | #endif /* CONFIG_LEDGER_INTERVAL_MAX */ |
| 1417 | |
| 1418 | kern_return_t |
| 1419 | ledger_get_lifetime_max(ledger_t ledger, int entry, |
| 1420 | ledger_amount_t *max_lifetime_balance) |
| 1421 | { |
| 1422 | struct ledger_entry *le; |
| 1423 | |
| 1424 | if (!is_entry_valid_and_active(l: ledger, entry)) { |
| 1425 | return KERN_INVALID_VALUE; |
| 1426 | } |
| 1427 | |
| 1428 | if (ENTRY_ID_SIZE(entry) != sizeof(struct ledger_entry)) { |
| 1429 | /* Small entries can't track max */ |
| 1430 | return KERN_INVALID_ARGUMENT; |
| 1431 | } |
| 1432 | |
| 1433 | le = ledger_entry_identifier_to_entry(ledger, id: entry); |
| 1434 | |
| 1435 | if (!(le->le_flags & LF_TRACKING_MAX)) { |
| 1436 | return KERN_INVALID_VALUE; |
| 1437 | } |
| 1438 | |
| 1439 | *max_lifetime_balance = le->_le._le_max.le_lifetime_max; |
| 1440 | lprintf(("ledger_get_lifetime_max: %lld\n" , *max_lifetime_balance)); |
| 1441 | |
| 1442 | return KERN_SUCCESS; |
| 1443 | } |
| 1444 | |
| 1445 | /* |
| 1446 | * Enable tracking of periodic maximums for this ledger entry. |
| 1447 | */ |
| 1448 | kern_return_t |
| 1449 | ledger_track_maximum(ledger_template_t template, int entry, |
| 1450 | __unused int period_in_secs) |
| 1451 | { |
| 1452 | uint16_t idx; |
| 1453 | const uint16_t *idx_p; |
| 1454 | struct entry_template *et = NULL; |
| 1455 | kern_return_t kr = KERN_INVALID_VALUE; |
| 1456 | |
| 1457 | template_lock(template); |
| 1458 | |
| 1459 | idx_p = ledger_entry_to_template_idx(template, index: entry); |
| 1460 | if (idx_p == NULL) { |
| 1461 | kr = KERN_INVALID_VALUE; |
| 1462 | goto out; |
| 1463 | } |
| 1464 | idx = *idx_p; |
| 1465 | if (idx >= template->lt_cnt) { |
| 1466 | kr = KERN_INVALID_VALUE; |
| 1467 | goto out; |
| 1468 | } |
| 1469 | et = &template->lt_entries[idx]; |
| 1470 | /* Ensure the caller asked for enough space up front */ |
| 1471 | if (et->et_size != sizeof(struct ledger_entry)) { |
| 1472 | kr = KERN_INVALID_VALUE; |
| 1473 | goto out; |
| 1474 | } |
| 1475 | |
| 1476 | /* Refill is incompatible with max tracking. */ |
| 1477 | if (et->et_flags & LF_REFILL_SCHEDULED) { |
| 1478 | kr = KERN_INVALID_VALUE; |
| 1479 | goto out; |
| 1480 | } |
| 1481 | |
| 1482 | et->et_flags |= LF_TRACKING_MAX; |
| 1483 | kr = KERN_SUCCESS; |
| 1484 | out: |
| 1485 | template_unlock(template); |
| 1486 | |
| 1487 | return kr; |
| 1488 | } |
| 1489 | |
| 1490 | kern_return_t |
| 1491 | ledger_panic_on_negative(ledger_template_t template, int entry) |
| 1492 | { |
| 1493 | const uint16_t *idx_p; |
| 1494 | uint16_t idx; |
| 1495 | template_lock(template); |
| 1496 | |
| 1497 | idx_p = ledger_entry_to_template_idx(template, index: entry); |
| 1498 | if (idx_p == NULL) { |
| 1499 | template_unlock(template); |
| 1500 | return KERN_INVALID_VALUE; |
| 1501 | } |
| 1502 | idx = *idx_p; |
| 1503 | if (idx >= template->lt_cnt) { |
| 1504 | template_unlock(template); |
| 1505 | return KERN_INVALID_VALUE; |
| 1506 | } |
| 1507 | |
| 1508 | template->lt_entries[idx].et_flags |= LF_PANIC_ON_NEGATIVE; |
| 1509 | |
| 1510 | template_unlock(template); |
| 1511 | |
| 1512 | return KERN_SUCCESS; |
| 1513 | } |
| 1514 | |
| 1515 | kern_return_t |
| 1516 | ledger_track_credit_only(ledger_template_t template, int entry) |
| 1517 | { |
| 1518 | const uint16_t *idx_p; |
| 1519 | uint16_t idx; |
| 1520 | struct entry_template *et = NULL; |
| 1521 | kern_return_t kr = KERN_INVALID_VALUE; |
| 1522 | template_lock(template); |
| 1523 | |
| 1524 | idx_p = ledger_entry_to_template_idx(template, index: entry); |
| 1525 | if (idx_p == NULL) { |
| 1526 | kr = KERN_INVALID_VALUE; |
| 1527 | goto out; |
| 1528 | } |
| 1529 | idx = *idx_p; |
| 1530 | if (idx >= template->lt_cnt) { |
| 1531 | kr = KERN_INVALID_VALUE; |
| 1532 | goto out; |
| 1533 | } |
| 1534 | et = &template->lt_entries[idx]; |
| 1535 | /* Ensure the caller asked for enough space up front */ |
| 1536 | if (et->et_size != sizeof(struct ledger_entry)) { |
| 1537 | kr = KERN_INVALID_VALUE; |
| 1538 | goto out; |
| 1539 | } |
| 1540 | |
| 1541 | et->et_flags |= LF_TRACK_CREDIT_ONLY; |
| 1542 | kr = KERN_SUCCESS; |
| 1543 | |
| 1544 | out: |
| 1545 | template_unlock(template); |
| 1546 | |
| 1547 | return kr; |
| 1548 | } |
| 1549 | |
| 1550 | /* |
| 1551 | * Add a callback to be executed when the resource goes into deficit. |
| 1552 | */ |
| 1553 | kern_return_t |
| 1554 | ledger_set_callback(ledger_template_t template, int entry, |
| 1555 | ledger_callback_t func, const void *param0, const void *param1) |
| 1556 | { |
| 1557 | struct entry_template *et; |
| 1558 | struct ledger_callback *old_cb, *new_cb; |
| 1559 | const uint16_t *idx_p; |
| 1560 | uint16_t idx; |
| 1561 | |
| 1562 | idx_p = ledger_entry_to_template_idx(template, index: entry); |
| 1563 | if (idx_p == NULL) { |
| 1564 | return KERN_INVALID_VALUE; |
| 1565 | } |
| 1566 | idx = *idx_p; |
| 1567 | |
| 1568 | if (idx >= template->lt_cnt) { |
| 1569 | return KERN_INVALID_VALUE; |
| 1570 | } |
| 1571 | |
| 1572 | if (func) { |
| 1573 | new_cb = kalloc_type(struct ledger_callback, Z_WAITOK); |
| 1574 | new_cb->lc_func = func; |
| 1575 | new_cb->lc_param0 = param0; |
| 1576 | new_cb->lc_param1 = param1; |
| 1577 | } else { |
| 1578 | new_cb = NULL; |
| 1579 | } |
| 1580 | |
| 1581 | template_lock(template); |
| 1582 | et = &template->lt_entries[idx]; |
| 1583 | /* Ensure the caller asked for enough space up front */ |
| 1584 | if (et->et_size != sizeof(struct ledger_entry)) { |
| 1585 | kfree_type(struct ledger_callback, new_cb); |
| 1586 | template_unlock(template); |
| 1587 | return KERN_INVALID_VALUE; |
| 1588 | } |
| 1589 | old_cb = et->et_callback; |
| 1590 | et->et_callback = new_cb; |
| 1591 | template_unlock(template); |
| 1592 | if (old_cb) { |
| 1593 | kfree_type(struct ledger_callback, old_cb); |
| 1594 | } |
| 1595 | |
| 1596 | return KERN_SUCCESS; |
| 1597 | } |
| 1598 | |
| 1599 | /* |
| 1600 | * Disable callback notification for a specific ledger entry. |
| 1601 | * |
| 1602 | * Otherwise, if using a ledger template which specified a |
| 1603 | * callback function (ledger_set_callback()), it will be invoked when |
| 1604 | * the resource goes into deficit. |
| 1605 | */ |
| 1606 | kern_return_t |
| 1607 | ledger_disable_callback(ledger_t ledger, int entry) |
| 1608 | { |
| 1609 | struct ledger_entry *le = NULL; |
| 1610 | |
| 1611 | if (!is_entry_valid_and_active(l: ledger, entry)) { |
| 1612 | return KERN_INVALID_VALUE; |
| 1613 | } |
| 1614 | |
| 1615 | if (ENTRY_ID_SIZE(entry) != sizeof(struct ledger_entry)) { |
| 1616 | /* Small entries can't have callbacks */ |
| 1617 | return KERN_INVALID_ARGUMENT; |
| 1618 | } |
| 1619 | |
| 1620 | le = ledger_entry_identifier_to_entry(ledger, id: entry); |
| 1621 | |
| 1622 | /* |
| 1623 | * le_warn_percent is used to indicate *if* this ledger has a warning configured, |
| 1624 | * in addition to what that warning level is set to. |
| 1625 | * This means a side-effect of ledger_disable_callback() is that the |
| 1626 | * warning level is forgotten. |
| 1627 | */ |
| 1628 | le->le_warn_percent = LEDGER_PERCENT_NONE; |
| 1629 | flag_clear(flags: &le->le_flags, LEDGER_ACTION_CALLBACK); |
| 1630 | return KERN_SUCCESS; |
| 1631 | } |
| 1632 | |
| 1633 | /* |
| 1634 | * Enable callback notification for a specific ledger entry. |
| 1635 | * |
| 1636 | * This is only needed if ledger_disable_callback() has previously |
| 1637 | * been invoked against an entry; there must already be a callback |
| 1638 | * configured. |
| 1639 | */ |
| 1640 | kern_return_t |
| 1641 | ledger_enable_callback(ledger_t ledger, int entry) |
| 1642 | { |
| 1643 | struct ledger_entry *le = NULL; |
| 1644 | |
| 1645 | if (!is_entry_valid_and_active(l: ledger, entry)) { |
| 1646 | return KERN_INVALID_VALUE; |
| 1647 | } |
| 1648 | |
| 1649 | if (ENTRY_ID_SIZE(entry) != sizeof(struct ledger_entry)) { |
| 1650 | /* Small entries can't have callbacks */ |
| 1651 | return KERN_INVALID_ARGUMENT; |
| 1652 | } |
| 1653 | |
| 1654 | le = ledger_entry_identifier_to_entry(ledger, id: entry); |
| 1655 | |
| 1656 | assert(entry_get_callback(ledger, entry) != NULL); |
| 1657 | |
| 1658 | flag_set(flags: &le->le_flags, LEDGER_ACTION_CALLBACK); |
| 1659 | return KERN_SUCCESS; |
| 1660 | } |
| 1661 | |
| 1662 | /* |
| 1663 | * Query the automatic refill period for this ledger entry. |
| 1664 | * |
| 1665 | * A period of 0 means this entry has none configured. |
| 1666 | */ |
| 1667 | kern_return_t |
| 1668 | ledger_get_period(ledger_t ledger, int entry, uint64_t *period) |
| 1669 | { |
| 1670 | struct ledger_entry *le; |
| 1671 | |
| 1672 | if (!is_entry_valid_and_active(l: ledger, entry)) { |
| 1673 | return KERN_INVALID_VALUE; |
| 1674 | } |
| 1675 | |
| 1676 | if (ENTRY_ID_SIZE(entry) != sizeof(struct ledger_entry)) { |
| 1677 | /* Small entries can't do refills */ |
| 1678 | return KERN_INVALID_ARGUMENT; |
| 1679 | } |
| 1680 | |
| 1681 | le = ledger_entry_identifier_to_entry(ledger, id: entry); |
| 1682 | |
| 1683 | *period = abstime_to_nsecs(abstime: le->_le.le_refill.le_refill_period); |
| 1684 | lprintf(("ledger_get_period: %llx\n" , *period)); |
| 1685 | return KERN_SUCCESS; |
| 1686 | } |
| 1687 | |
| 1688 | /* |
| 1689 | * Adjust the automatic refill period. |
| 1690 | */ |
| 1691 | kern_return_t |
| 1692 | ledger_set_period(ledger_t ledger, int entry, uint64_t period) |
| 1693 | { |
| 1694 | struct ledger_entry *le = NULL; |
| 1695 | |
| 1696 | if (!is_entry_valid_and_active(l: ledger, entry)) { |
| 1697 | return KERN_INVALID_VALUE; |
| 1698 | } |
| 1699 | |
| 1700 | if (ENTRY_ID_SIZE(entry) != sizeof(struct ledger_entry)) { |
| 1701 | /* Small entries can't do refills */ |
| 1702 | return KERN_INVALID_ARGUMENT; |
| 1703 | } |
| 1704 | |
| 1705 | lprintf(("ledger_set_period: %llx\n" , period)); |
| 1706 | |
| 1707 | le = ledger_entry_identifier_to_entry(ledger, id: entry); |
| 1708 | |
| 1709 | /* |
| 1710 | * A refill period refills the ledger in multiples of the limit, |
| 1711 | * so if you haven't set one yet, you need a lesson on ledgers. |
| 1712 | */ |
| 1713 | assert(le->le_limit != LEDGER_LIMIT_INFINITY); |
| 1714 | |
| 1715 | if (le->le_flags & LF_TRACKING_MAX) { |
| 1716 | /* |
| 1717 | * Refill is incompatible with rolling max tracking. |
| 1718 | */ |
| 1719 | return KERN_INVALID_VALUE; |
| 1720 | } |
| 1721 | |
| 1722 | le->_le.le_refill.le_refill_period = nsecs_to_abstime(nsecs: period); |
| 1723 | |
| 1724 | /* |
| 1725 | * Set the 'starting time' for the next refill to now. Since |
| 1726 | * we're resetting the balance to zero here, we consider this |
| 1727 | * moment the starting time for accumulating a balance that |
| 1728 | * counts towards the limit. |
| 1729 | */ |
| 1730 | le->_le.le_refill.le_last_refill = mach_absolute_time(); |
| 1731 | ledger_zero_balance(ledger, entry); |
| 1732 | |
| 1733 | flag_set(flags: &le->le_flags, LF_REFILL_SCHEDULED); |
| 1734 | |
| 1735 | return KERN_SUCCESS; |
| 1736 | } |
| 1737 | |
| 1738 | /* |
| 1739 | * Disable automatic refill. |
| 1740 | */ |
| 1741 | kern_return_t |
| 1742 | ledger_disable_refill(ledger_t ledger, int entry) |
| 1743 | { |
| 1744 | struct ledger_entry *le = NULL; |
| 1745 | |
| 1746 | if (!is_entry_valid_and_active(l: ledger, entry)) { |
| 1747 | return KERN_INVALID_VALUE; |
| 1748 | } |
| 1749 | |
| 1750 | if (ENTRY_ID_SIZE(entry) != sizeof(struct ledger_entry)) { |
| 1751 | /* Small entries can't do refills */ |
| 1752 | return KERN_INVALID_ARGUMENT; |
| 1753 | } |
| 1754 | |
| 1755 | le = ledger_entry_identifier_to_entry(ledger, id: entry); |
| 1756 | |
| 1757 | flag_clear(flags: &le->le_flags, LF_REFILL_SCHEDULED); |
| 1758 | |
| 1759 | return KERN_SUCCESS; |
| 1760 | } |
| 1761 | |
| 1762 | kern_return_t |
| 1763 | ledger_get_actions(ledger_t ledger, int entry, int *actions) |
| 1764 | { |
| 1765 | struct ledger_entry *le = NULL; |
| 1766 | *actions = 0; |
| 1767 | |
| 1768 | if (!is_entry_valid_and_active(l: ledger, entry)) { |
| 1769 | return KERN_INVALID_VALUE; |
| 1770 | } |
| 1771 | |
| 1772 | if (ENTRY_ID_SIZE(entry) != sizeof(struct ledger_entry)) { |
| 1773 | /* Small entries can't have actions */ |
| 1774 | return KERN_INVALID_ARGUMENT; |
| 1775 | } |
| 1776 | |
| 1777 | le = ledger_entry_identifier_to_entry(ledger, id: entry); |
| 1778 | |
| 1779 | *actions = le->le_flags & LEDGER_ACTION_MASK; |
| 1780 | lprintf(("ledger_get_actions: %#x\n" , *actions)); |
| 1781 | return KERN_SUCCESS; |
| 1782 | } |
| 1783 | |
| 1784 | kern_return_t |
| 1785 | ledger_set_action(ledger_t ledger, int entry, int action) |
| 1786 | { |
| 1787 | lprintf(("ledger_set_action: %#x\n" , action)); |
| 1788 | struct ledger_entry *le = NULL; |
| 1789 | |
| 1790 | if (!is_entry_valid_and_active(l: ledger, entry)) { |
| 1791 | return KERN_INVALID_VALUE; |
| 1792 | } |
| 1793 | |
| 1794 | if (ENTRY_ID_SIZE(entry) != sizeof(struct ledger_entry)) { |
| 1795 | /* Small entries can't have actions */ |
| 1796 | return KERN_INVALID_ARGUMENT; |
| 1797 | } |
| 1798 | |
| 1799 | le = ledger_entry_identifier_to_entry(ledger, id: entry); |
| 1800 | |
| 1801 | flag_set(flags: &le->le_flags, bit: action); |
| 1802 | return KERN_SUCCESS; |
| 1803 | } |
| 1804 | |
| 1805 | kern_return_t |
| 1806 | ledger_debit_thread(thread_t thread, ledger_t ledger, int entry, ledger_amount_t amount) |
| 1807 | { |
| 1808 | struct ledger_entry *le; |
| 1809 | ledger_amount_t old, new; |
| 1810 | uint16_t entry_size = ENTRY_ID_SIZE(entry); |
| 1811 | |
| 1812 | if (!is_entry_valid_and_active(l: ledger, entry) || (amount < 0)) { |
| 1813 | return KERN_INVALID_ARGUMENT; |
| 1814 | } |
| 1815 | |
| 1816 | if (amount == 0) { |
| 1817 | return KERN_SUCCESS; |
| 1818 | } |
| 1819 | |
| 1820 | if (entry_size == sizeof(struct ledger_entry_small)) { |
| 1821 | struct ledger_entry_small *les = &ledger->l_entries[ENTRY_ID_OFFSET(entry)]; |
| 1822 | old = OSAddAtomic64(-amount, &les->les_credit); |
| 1823 | new = old - amount; |
| 1824 | } else if (entry_size == sizeof(struct ledger_entry)) { |
| 1825 | le = ledger_entry_identifier_to_entry(ledger, id: entry); |
| 1826 | |
| 1827 | if (le->le_flags & LF_TRACK_CREDIT_ONLY) { |
| 1828 | assert(le->le_debit == 0); |
| 1829 | old = OSAddAtomic64(-amount, &le->le_credit); |
| 1830 | new = old - amount; |
| 1831 | } else { |
| 1832 | old = OSAddAtomic64(amount, &le->le_debit); |
| 1833 | new = old + amount; |
| 1834 | } |
| 1835 | } else { |
| 1836 | panic("Unknown ledger entry size! ledger=%p, entry=0x%x, entry_size=%d\n" , ledger, entry, entry_size); |
| 1837 | } |
| 1838 | lprintf(("%p Debit %lld->%lld\n" , thread, old, new)); |
| 1839 | |
| 1840 | if (thread) { |
| 1841 | ledger_entry_check_new_balance(thread, ledger, entry); |
| 1842 | } |
| 1843 | |
| 1844 | return KERN_SUCCESS; |
| 1845 | } |
| 1846 | |
| 1847 | kern_return_t |
| 1848 | ledger_debit(ledger_t ledger, int entry, ledger_amount_t amount) |
| 1849 | { |
| 1850 | return ledger_debit_thread(thread: current_thread(), ledger, entry, amount); |
| 1851 | } |
| 1852 | |
| 1853 | kern_return_t |
| 1854 | ledger_debit_nocheck(ledger_t ledger, int entry, ledger_amount_t amount) |
| 1855 | { |
| 1856 | return ledger_debit_thread(NULL, ledger, entry, amount); |
| 1857 | } |
| 1858 | |
| 1859 | void |
| 1860 | ledger_ast(thread_t thread) |
| 1861 | { |
| 1862 | struct ledger *l = thread->t_ledger; |
| 1863 | struct ledger *thl; |
| 1864 | struct ledger *coalition_ledger; |
| 1865 | uint32_t block; |
| 1866 | uint64_t now; |
| 1867 | uint8_t task_flags; |
| 1868 | uint8_t task_percentage; |
| 1869 | uint64_t task_interval; |
| 1870 | |
| 1871 | kern_return_t ret; |
| 1872 | task_t task = get_threadtask(thread); |
| 1873 | |
| 1874 | lprintf(("Ledger AST for %p\n" , thread)); |
| 1875 | |
| 1876 | ASSERT(task != NULL); |
| 1877 | ASSERT(thread == current_thread()); |
| 1878 | |
| 1879 | #if CONFIG_SCHED_RT_ALLOW |
| 1880 | /* |
| 1881 | * The RT policy may have forced a CPU limit on the thread. Check if |
| 1882 | * that's the case and apply the limit as requested. |
| 1883 | */ |
| 1884 | spl_t s = splsched(); |
| 1885 | thread_lock(thread); |
| 1886 | |
| 1887 | int req_action = thread->t_ledger_req_action; |
| 1888 | uint8_t req_percentage = thread->t_ledger_req_percentage; |
| 1889 | uint64_t req_interval_ns = thread->t_ledger_req_interval_ms * NSEC_PER_MSEC; |
| 1890 | |
| 1891 | thread->t_ledger_req_action = 0; |
| 1892 | |
| 1893 | thread_unlock(thread); |
| 1894 | splx(s); |
| 1895 | |
| 1896 | if (req_action != 0) { |
| 1897 | assert(req_action == THREAD_CPULIMIT_DISABLE || |
| 1898 | req_action == THREAD_CPULIMIT_BLOCK); |
| 1899 | |
| 1900 | if (req_action == THREAD_CPULIMIT_DISABLE && |
| 1901 | (thread->options & TH_OPT_FORCED_LEDGER) != 0) { |
| 1902 | thread->options &= ~TH_OPT_FORCED_LEDGER; |
| 1903 | ret = thread_set_cpulimit(THREAD_CPULIMIT_DISABLE, 0, 0); |
| 1904 | assert3u(ret, ==, KERN_SUCCESS); |
| 1905 | } |
| 1906 | |
| 1907 | if (req_action == THREAD_CPULIMIT_BLOCK) { |
| 1908 | thread->options &= ~TH_OPT_FORCED_LEDGER; |
| 1909 | ret = thread_set_cpulimit(THREAD_CPULIMIT_BLOCK, |
| 1910 | req_percentage, req_interval_ns); |
| 1911 | assert3u(ret, ==, KERN_SUCCESS); |
| 1912 | thread->options |= TH_OPT_FORCED_LEDGER; |
| 1913 | } |
| 1914 | } |
| 1915 | #endif /* CONFIG_SCHED_RT_ALLOW */ |
| 1916 | |
| 1917 | top: |
| 1918 | /* |
| 1919 | * Take a self-consistent snapshot of the CPU usage monitor parameters. The task |
| 1920 | * can change them at any point (with the task locked). |
| 1921 | */ |
| 1922 | task_lock(task); |
| 1923 | task_flags = task->rusage_cpu_flags; |
| 1924 | task_percentage = task->rusage_cpu_perthr_percentage; |
| 1925 | task_interval = task->rusage_cpu_perthr_interval; |
| 1926 | task_unlock(task); |
| 1927 | |
| 1928 | /* |
| 1929 | * Make sure this thread is up to date with regards to any task-wide per-thread |
| 1930 | * CPU limit, but only if it doesn't have a thread-private blocking CPU limit. |
| 1931 | */ |
| 1932 | if (((task_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) != 0) && |
| 1933 | ((thread->options & TH_OPT_PRVT_CPULIMIT) == 0)) { |
| 1934 | uint8_t percentage; |
| 1935 | uint64_t interval; |
| 1936 | int action; |
| 1937 | |
| 1938 | thread_get_cpulimit(action: &action, percentage: &percentage, interval_ns: &interval); |
| 1939 | |
| 1940 | /* |
| 1941 | * If the thread's CPU limits no longer match the task's, or the |
| 1942 | * task has a limit but the thread doesn't, update the limit. |
| 1943 | */ |
| 1944 | if (((thread->options & TH_OPT_PROC_CPULIMIT) == 0) || |
| 1945 | (interval != task_interval) || (percentage != task_percentage)) { |
| 1946 | thread_set_cpulimit(THREAD_CPULIMIT_EXCEPTION, percentage: task_percentage, interval_ns: task_interval); |
| 1947 | assert((thread->options & TH_OPT_PROC_CPULIMIT) != 0); |
| 1948 | } |
| 1949 | } else if (((task_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) == 0) && |
| 1950 | (thread->options & TH_OPT_PROC_CPULIMIT)) { |
| 1951 | assert((thread->options & TH_OPT_PRVT_CPULIMIT) == 0); |
| 1952 | |
| 1953 | /* |
| 1954 | * Task no longer has a per-thread CPU limit; remove this thread's |
| 1955 | * corresponding CPU limit. |
| 1956 | */ |
| 1957 | thread_set_cpulimit(THREAD_CPULIMIT_DISABLE, percentage: 0, interval_ns: 0); |
| 1958 | assert((thread->options & TH_OPT_PROC_CPULIMIT) == 0); |
| 1959 | } |
| 1960 | |
| 1961 | /* |
| 1962 | * If the task or thread is being terminated, let's just get on with it |
| 1963 | */ |
| 1964 | if ((l == NULL) || !task->active || task->halting || !thread->active) { |
| 1965 | return; |
| 1966 | } |
| 1967 | |
| 1968 | /* |
| 1969 | * Examine all entries in deficit to see which might be eligble for |
| 1970 | * an automatic refill, which require callbacks to be issued, and |
| 1971 | * which require blocking. |
| 1972 | */ |
| 1973 | block = 0; |
| 1974 | now = mach_absolute_time(); |
| 1975 | |
| 1976 | /* |
| 1977 | * Note that thread->t_threadledger may have been changed by the |
| 1978 | * thread_set_cpulimit() call above - so don't examine it until afterwards. |
| 1979 | */ |
| 1980 | thl = thread->t_threadledger; |
| 1981 | if (LEDGER_VALID(thl)) { |
| 1982 | block |= ledger_check_needblock(l: thl, now); |
| 1983 | } |
| 1984 | block |= ledger_check_needblock(l, now); |
| 1985 | |
| 1986 | coalition_ledger = coalition_ledger_get_from_task(task); |
| 1987 | if (LEDGER_VALID(coalition_ledger)) { |
| 1988 | block |= ledger_check_needblock(l: coalition_ledger, now); |
| 1989 | } |
| 1990 | ledger_dereference(ledger: coalition_ledger); |
| 1991 | /* |
| 1992 | * If we are supposed to block on the availability of one or more |
| 1993 | * resources, find the first entry in deficit for which we should wait. |
| 1994 | * Schedule a refill if necessary and then sleep until the resource |
| 1995 | * becomes available. |
| 1996 | */ |
| 1997 | if (block) { |
| 1998 | if (LEDGER_VALID(thl)) { |
| 1999 | ret = ledger_perform_blocking(l: thl); |
| 2000 | if (ret != KERN_SUCCESS) { |
| 2001 | goto top; |
| 2002 | } |
| 2003 | } |
| 2004 | ret = ledger_perform_blocking(l); |
| 2005 | if (ret != KERN_SUCCESS) { |
| 2006 | goto top; |
| 2007 | } |
| 2008 | } /* block */ |
| 2009 | } |
| 2010 | |
| 2011 | static uint32_t |
| 2012 | ledger_check_needblock(ledger_t l, uint64_t now) |
| 2013 | { |
| 2014 | int i; |
| 2015 | uint32_t flags, block = 0; |
| 2016 | struct ledger_entry *le; |
| 2017 | struct ledger_callback *lc; |
| 2018 | struct entry_template *et = NULL; |
| 2019 | ledger_template_t template = NULL; |
| 2020 | |
| 2021 | template = l->l_template; |
| 2022 | assert(template != NULL); |
| 2023 | assert(template->lt_initialized); |
| 2024 | /* |
| 2025 | * The template has been initialized so the entries table can't change. |
| 2026 | * Thus we don't need to acquire the template lock or the inuse bit. |
| 2027 | */ |
| 2028 | |
| 2029 | |
| 2030 | for (i = 0; i < template->lt_cnt; i++) { |
| 2031 | spl_t s; |
| 2032 | et = &template->lt_entries[i]; |
| 2033 | if (et->et_size == sizeof(struct ledger_entry_small)) { |
| 2034 | /* Small entries don't track limits or have callbacks */ |
| 2035 | continue; |
| 2036 | } |
| 2037 | assert(et->et_size == sizeof(struct ledger_entry)); |
| 2038 | le = (struct ledger_entry *) &l->l_entries[et->et_offset]; |
| 2039 | |
| 2040 | TEMPLATE_INUSE(s, template); |
| 2041 | lc = template->lt_entries[i].et_callback; |
| 2042 | TEMPLATE_IDLE(s, template); |
| 2043 | |
| 2044 | if (limit_exceeded(le) == FALSE) { |
| 2045 | if (le->le_flags & LEDGER_ACTION_CALLBACK) { |
| 2046 | /* |
| 2047 | * If needed, invoke the callback as a warning. |
| 2048 | * This needs to happen both when the balance rises above |
| 2049 | * the warning level, and also when it dips back below it. |
| 2050 | */ |
| 2051 | assert(lc != NULL); |
| 2052 | /* |
| 2053 | * See comments for matching logic in ledger_check_new_balance(). |
| 2054 | */ |
| 2055 | if (warn_level_exceeded(le)) { |
| 2056 | flags = flag_set(flags: &le->le_flags, LF_WARNED); |
| 2057 | if ((flags & LF_WARNED) == 0) { |
| 2058 | lc->lc_func(LEDGER_WARNING_ROSE_ABOVE, lc->lc_param0, lc->lc_param1); |
| 2059 | } |
| 2060 | } else { |
| 2061 | flags = flag_clear(flags: &le->le_flags, LF_WARNED); |
| 2062 | if (flags & LF_WARNED) { |
| 2063 | lc->lc_func(LEDGER_WARNING_DIPPED_BELOW, lc->lc_param0, lc->lc_param1); |
| 2064 | } |
| 2065 | } |
| 2066 | } |
| 2067 | #if DEBUG || DEVELOPMENT |
| 2068 | if (diag_mem_threshold_exceeded(le)) { |
| 2069 | if (le->le_flags & LEDGER_ACTION_CALLBACK) { |
| 2070 | assert(lc != NULL); |
| 2071 | flags = flag_set(&le->le_flags, LF_DIAG_WARNED); |
| 2072 | if ((flags & LF_DIAG_WARNED) == 0) { |
| 2073 | lc->lc_func(LEDGER_WARNING_DIAG_MEM_THRESHOLD, lc->lc_param0, lc->lc_param1); |
| 2074 | } |
| 2075 | } |
| 2076 | } |
| 2077 | #endif |
| 2078 | continue; |
| 2079 | } |
| 2080 | #if DEBUG || DEVELOPMENT |
| 2081 | if (diag_mem_threshold_exceeded(le)) { |
| 2082 | if (le->le_flags & LEDGER_ACTION_CALLBACK) { |
| 2083 | assert(lc != NULL); |
| 2084 | flags = flag_set(&le->le_flags, LF_DIAG_WARNED); |
| 2085 | if ((flags & LF_DIAG_WARNED) == 0) { |
| 2086 | lc->lc_func(LEDGER_WARNING_DIAG_MEM_THRESHOLD, lc->lc_param0, lc->lc_param1); |
| 2087 | } |
| 2088 | } |
| 2089 | } |
| 2090 | #endif |
| 2091 | |
| 2092 | /* We're over the limit, so refill if we are eligible and past due. */ |
| 2093 | if (le->le_flags & LF_REFILL_SCHEDULED) { |
| 2094 | assert(!(le->le_flags & LF_TRACKING_MAX)); |
| 2095 | |
| 2096 | if ((le->_le.le_refill.le_last_refill + le->_le.le_refill.le_refill_period) <= now) { |
| 2097 | ledger_refill(now, ledger: l, entry: i); |
| 2098 | if (limit_exceeded(le) == FALSE) { |
| 2099 | continue; |
| 2100 | } |
| 2101 | } |
| 2102 | } |
| 2103 | |
| 2104 | if (le->le_flags & LEDGER_ACTION_BLOCK) { |
| 2105 | block = 1; |
| 2106 | } |
| 2107 | if ((le->le_flags & LEDGER_ACTION_CALLBACK) == 0) { |
| 2108 | continue; |
| 2109 | } |
| 2110 | |
| 2111 | /* |
| 2112 | * If the LEDGER_ACTION_CALLBACK flag is on, we expect there to |
| 2113 | * be a registered callback. |
| 2114 | */ |
| 2115 | assert(lc != NULL); |
| 2116 | flags = flag_set(flags: &le->le_flags, LF_CALLED_BACK); |
| 2117 | /* Callback has already been called */ |
| 2118 | if (flags & LF_CALLED_BACK) { |
| 2119 | continue; |
| 2120 | } |
| 2121 | lc->lc_func(FALSE, lc->lc_param0, lc->lc_param1); |
| 2122 | } |
| 2123 | return block; |
| 2124 | } |
| 2125 | |
| 2126 | |
| 2127 | /* return KERN_SUCCESS to continue, KERN_FAILURE to restart */ |
| 2128 | static kern_return_t |
| 2129 | ledger_perform_blocking(ledger_t l) |
| 2130 | { |
| 2131 | int i; |
| 2132 | kern_return_t ret; |
| 2133 | struct ledger_entry *le; |
| 2134 | ledger_template_t template = NULL; |
| 2135 | struct entry_template *et = NULL; |
| 2136 | |
| 2137 | template = l->l_template; |
| 2138 | assert(template->lt_initialized); |
| 2139 | |
| 2140 | for (i = 0; i < template->lt_cnt; i++) { |
| 2141 | et = &template->lt_entries[i]; |
| 2142 | if (et->et_size != sizeof(struct ledger_entry)) { |
| 2143 | /* Small entries do not block for anything. */ |
| 2144 | continue; |
| 2145 | } |
| 2146 | le = (struct ledger_entry *) &l->l_entries[et->et_offset]; |
| 2147 | if ((!limit_exceeded(le)) || |
| 2148 | ((le->le_flags & LEDGER_ACTION_BLOCK) == 0)) { |
| 2149 | continue; |
| 2150 | } |
| 2151 | |
| 2152 | assert(!(le->le_flags & LF_TRACKING_MAX)); |
| 2153 | |
| 2154 | /* Prepare to sleep until the resource is refilled */ |
| 2155 | ret = assert_wait_deadline(event: le, THREAD_INTERRUPTIBLE, |
| 2156 | deadline: le->_le.le_refill.le_last_refill + le->_le.le_refill.le_refill_period); |
| 2157 | if (ret != THREAD_WAITING) { |
| 2158 | return KERN_SUCCESS; |
| 2159 | } |
| 2160 | |
| 2161 | /* Mark that somebody is waiting on this entry */ |
| 2162 | flag_set(flags: &le->le_flags, LF_WAKE_NEEDED); |
| 2163 | |
| 2164 | ret = thread_block_reason(THREAD_CONTINUE_NULL, NULL, |
| 2165 | AST_LEDGER); |
| 2166 | if (ret != THREAD_AWAKENED) { |
| 2167 | return KERN_SUCCESS; |
| 2168 | } |
| 2169 | |
| 2170 | /* |
| 2171 | * The world may have changed while we were asleep. |
| 2172 | * Some other resource we need may have gone into |
| 2173 | * deficit. Or maybe we're supposed to die now. |
| 2174 | * Go back to the top and reevaluate. |
| 2175 | */ |
| 2176 | return KERN_FAILURE; |
| 2177 | } |
| 2178 | return KERN_SUCCESS; |
| 2179 | } |
| 2180 | |
| 2181 | |
| 2182 | kern_return_t |
| 2183 | ledger_get_entries(ledger_t ledger, int entry, ledger_amount_t *credit, |
| 2184 | ledger_amount_t *debit) |
| 2185 | { |
| 2186 | struct ledger_entry *le = NULL; |
| 2187 | struct ledger_entry_small *les = NULL; |
| 2188 | uint16_t entry_size, entry_offset; |
| 2189 | |
| 2190 | if (!is_entry_valid_and_active(l: ledger, entry)) { |
| 2191 | return KERN_INVALID_ARGUMENT; |
| 2192 | } |
| 2193 | |
| 2194 | entry_size = ENTRY_ID_SIZE(entry); |
| 2195 | entry_offset = ENTRY_ID_OFFSET(entry); |
| 2196 | les = &ledger->l_entries[entry_offset]; |
| 2197 | if (entry_size == sizeof(struct ledger_entry)) { |
| 2198 | le = (struct ledger_entry *)les; |
| 2199 | *credit = le->le_credit; |
| 2200 | *debit = le->le_debit; |
| 2201 | } else if (entry_size == sizeof(struct ledger_entry_small)) { |
| 2202 | *credit = les->les_credit; |
| 2203 | *debit = 0; |
| 2204 | } else { |
| 2205 | panic("Unknown ledger entry size! ledger=%p, entry=0x%x, entry_size=%d\n" , ledger, entry, entry_size); |
| 2206 | } |
| 2207 | |
| 2208 | return KERN_SUCCESS; |
| 2209 | } |
| 2210 | |
| 2211 | kern_return_t |
| 2212 | ledger_reset_callback_state(ledger_t ledger, int entry) |
| 2213 | { |
| 2214 | struct ledger_entry *le = NULL; |
| 2215 | |
| 2216 | if (!is_entry_valid_and_active(l: ledger, entry)) { |
| 2217 | return KERN_INVALID_ARGUMENT; |
| 2218 | } |
| 2219 | |
| 2220 | if (ENTRY_ID_SIZE(entry) != sizeof(struct ledger_entry)) { |
| 2221 | /* small entries can't have callbacks */ |
| 2222 | return KERN_INVALID_ARGUMENT; |
| 2223 | } |
| 2224 | |
| 2225 | le = ledger_entry_identifier_to_entry(ledger, id: entry); |
| 2226 | |
| 2227 | flag_clear(flags: &le->le_flags, LF_CALLED_BACK); |
| 2228 | |
| 2229 | return KERN_SUCCESS; |
| 2230 | } |
| 2231 | |
| 2232 | kern_return_t |
| 2233 | ledger_disable_panic_on_negative(ledger_t ledger, int entry) |
| 2234 | { |
| 2235 | volatile uint32_t *flags; |
| 2236 | |
| 2237 | if (!is_entry_valid_and_active(l: ledger, entry)) { |
| 2238 | return KERN_INVALID_ARGUMENT; |
| 2239 | } |
| 2240 | flags = get_entry_flags(l: ledger, index: entry); |
| 2241 | |
| 2242 | flag_clear(flags, LF_PANIC_ON_NEGATIVE); |
| 2243 | |
| 2244 | return KERN_SUCCESS; |
| 2245 | } |
| 2246 | |
| 2247 | kern_return_t |
| 2248 | ledger_get_panic_on_negative(ledger_t ledger, int entry, int *panic_on_negative) |
| 2249 | { |
| 2250 | volatile uint32_t flags; |
| 2251 | |
| 2252 | if (!is_entry_valid_and_active(l: ledger, entry)) { |
| 2253 | return KERN_INVALID_ARGUMENT; |
| 2254 | } |
| 2255 | flags = *get_entry_flags(l: ledger, index: entry); |
| 2256 | |
| 2257 | if (flags & LF_PANIC_ON_NEGATIVE) { |
| 2258 | *panic_on_negative = TRUE; |
| 2259 | } else { |
| 2260 | *panic_on_negative = FALSE; |
| 2261 | } |
| 2262 | |
| 2263 | return KERN_SUCCESS; |
| 2264 | } |
| 2265 | |
| 2266 | kern_return_t |
| 2267 | ledger_get_balance(ledger_t ledger, int entry, ledger_amount_t *balance) |
| 2268 | { |
| 2269 | kern_return_t kr; |
| 2270 | ledger_amount_t credit, debit; |
| 2271 | |
| 2272 | kr = ledger_get_entries(ledger, entry, credit: &credit, debit: &debit); |
| 2273 | if (kr != KERN_SUCCESS) { |
| 2274 | return kr; |
| 2275 | } |
| 2276 | *balance = credit - debit; |
| 2277 | |
| 2278 | return KERN_SUCCESS; |
| 2279 | } |
| 2280 | |
| 2281 | int |
| 2282 | ledger_template_info(void **buf, int *len) |
| 2283 | { |
| 2284 | struct ledger_template_info *lti; |
| 2285 | struct entry_template *et; |
| 2286 | ledger_template_t template; |
| 2287 | int i; |
| 2288 | ledger_t l; |
| 2289 | |
| 2290 | /* |
| 2291 | * Since all tasks share a ledger template, we'll just use the |
| 2292 | * caller's as the source. |
| 2293 | */ |
| 2294 | l = current_task()->ledger; |
| 2295 | if ((*len < 0) || (l == NULL)) { |
| 2296 | return EINVAL; |
| 2297 | } |
| 2298 | template = l->l_template; |
| 2299 | assert(template); |
| 2300 | assert(template->lt_initialized); |
| 2301 | |
| 2302 | if (*len > template->lt_cnt) { |
| 2303 | *len = template->lt_cnt; |
| 2304 | } |
| 2305 | lti = kalloc_data((*len) * sizeof(struct ledger_template_info), |
| 2306 | Z_WAITOK); |
| 2307 | if (lti == NULL) { |
| 2308 | return ENOMEM; |
| 2309 | } |
| 2310 | *buf = lti; |
| 2311 | |
| 2312 | template_lock(template); |
| 2313 | et = template->lt_entries; |
| 2314 | |
| 2315 | for (i = 0; i < *len; i++) { |
| 2316 | memset(s: lti, c: 0, n: sizeof(*lti)); |
| 2317 | strlcpy(dst: lti->lti_name, src: et->et_key, LEDGER_NAME_MAX); |
| 2318 | strlcpy(dst: lti->lti_group, src: et->et_group, LEDGER_NAME_MAX); |
| 2319 | strlcpy(dst: lti->lti_units, src: et->et_units, LEDGER_NAME_MAX); |
| 2320 | et++; |
| 2321 | lti++; |
| 2322 | } |
| 2323 | template_unlock(template); |
| 2324 | |
| 2325 | return 0; |
| 2326 | } |
| 2327 | |
| 2328 | static kern_return_t |
| 2329 | ledger_fill_entry_info(ledger_t ledger, |
| 2330 | int entry, |
| 2331 | struct ledger_entry_info *lei, |
| 2332 | uint64_t now) |
| 2333 | { |
| 2334 | assert(ledger != NULL); |
| 2335 | assert(lei != NULL); |
| 2336 | if (!is_entry_valid(l: ledger, entry)) { |
| 2337 | return KERN_INVALID_ARGUMENT; |
| 2338 | } |
| 2339 | uint16_t entry_size, entry_offset; |
| 2340 | struct ledger_entry_small *les = NULL; |
| 2341 | struct ledger_entry *le = NULL; |
| 2342 | entry_size = ENTRY_ID_SIZE(entry); |
| 2343 | entry_offset = ENTRY_ID_OFFSET(entry); |
| 2344 | |
| 2345 | les = &ledger->l_entries[entry_offset]; |
| 2346 | memset(s: lei, c: 0, n: sizeof(*lei)); |
| 2347 | if (entry_size == sizeof(struct ledger_entry_small)) { |
| 2348 | lei->lei_limit = LEDGER_LIMIT_INFINITY; |
| 2349 | lei->lei_credit = les->les_credit; |
| 2350 | lei->lei_debit = 0; |
| 2351 | lei->lei_refill_period = 0; |
| 2352 | lei->lei_last_refill = abstime_to_nsecs(abstime: now); |
| 2353 | } else if (entry_size == sizeof(struct ledger_entry)) { |
| 2354 | le = (struct ledger_entry *) les; |
| 2355 | lei->lei_limit = le->le_limit; |
| 2356 | lei->lei_credit = le->le_credit; |
| 2357 | lei->lei_debit = le->le_debit; |
| 2358 | lei->lei_refill_period = (le->le_flags & LF_REFILL_SCHEDULED) ? |
| 2359 | abstime_to_nsecs(abstime: le->_le.le_refill.le_refill_period) : 0; |
| 2360 | lei->lei_last_refill = abstime_to_nsecs(abstime: now - le->_le.le_refill.le_last_refill); |
| 2361 | } else { |
| 2362 | panic("Unknown ledger entry size! ledger=%p, entry=0x%x, entry_size=%d\n" , ledger, entry, entry_size); |
| 2363 | } |
| 2364 | |
| 2365 | lei->lei_balance = lei->lei_credit - lei->lei_debit; |
| 2366 | |
| 2367 | return KERN_SUCCESS; |
| 2368 | } |
| 2369 | |
| 2370 | int |
| 2371 | ledger_get_task_entry_info_multiple(task_t task, void **buf, int *len) |
| 2372 | { |
| 2373 | struct ledger_entry_info *lei_buf = NULL, *lei_curr = NULL; |
| 2374 | uint64_t now = mach_absolute_time(); |
| 2375 | vm_size_t size = 0; |
| 2376 | int i; |
| 2377 | ledger_t l; |
| 2378 | ledger_template_t template; |
| 2379 | struct entry_template *et = NULL; |
| 2380 | |
| 2381 | if ((*len < 0) || ((l = task->ledger) == NULL)) { |
| 2382 | return EINVAL; |
| 2383 | } |
| 2384 | template = l->l_template; |
| 2385 | assert(template && template->lt_initialized); |
| 2386 | |
| 2387 | if (*len > template->lt_cnt) { |
| 2388 | *len = template->lt_cnt; |
| 2389 | } |
| 2390 | size = (*len) * sizeof(struct ledger_entry_info); |
| 2391 | lei_buf = kalloc_data(size, Z_WAITOK); |
| 2392 | if (lei_buf == NULL) { |
| 2393 | return ENOMEM; |
| 2394 | } |
| 2395 | lei_curr = lei_buf; |
| 2396 | |
| 2397 | for (i = 0; i < *len; i++) { |
| 2398 | et = &template->lt_entries[i]; |
| 2399 | int index = ledger_entry_id_from_template_entry(et); |
| 2400 | if (ledger_fill_entry_info(ledger: l, entry: index, lei: lei_curr, now) != KERN_SUCCESS) { |
| 2401 | kfree_data(lei_buf, size); |
| 2402 | lei_buf = NULL; |
| 2403 | return EINVAL; |
| 2404 | } |
| 2405 | lei_curr++; |
| 2406 | } |
| 2407 | |
| 2408 | *buf = lei_buf; |
| 2409 | return 0; |
| 2410 | } |
| 2411 | |
| 2412 | void |
| 2413 | ledger_get_entry_info(ledger_t ledger, |
| 2414 | int entry, |
| 2415 | struct ledger_entry_info *lei) |
| 2416 | { |
| 2417 | uint64_t now = mach_absolute_time(); |
| 2418 | |
| 2419 | assert(ledger != NULL); |
| 2420 | assert(lei != NULL); |
| 2421 | |
| 2422 | ledger_fill_entry_info(ledger, entry, lei, now); |
| 2423 | } |
| 2424 | |
| 2425 | int |
| 2426 | ledger_info(task_t task, struct ledger_info *info) |
| 2427 | { |
| 2428 | ledger_t l; |
| 2429 | |
| 2430 | if ((l = task->ledger) == NULL) { |
| 2431 | return ENOENT; |
| 2432 | } |
| 2433 | |
| 2434 | memset(s: info, c: 0, n: sizeof(*info)); |
| 2435 | |
| 2436 | strlcpy(dst: info->li_name, src: l->l_template->lt_name, LEDGER_NAME_MAX); |
| 2437 | info->li_id = l->l_id; |
| 2438 | info->li_entries = l->l_template->lt_cnt; |
| 2439 | return 0; |
| 2440 | } |
| 2441 | |
| 2442 | /* |
| 2443 | * Returns the amount that would be required to hit the limit. |
| 2444 | * Must be a valid, active, full-sized ledger. |
| 2445 | */ |
| 2446 | ledger_amount_t |
| 2447 | ledger_get_remaining(ledger_t ledger, int entry) |
| 2448 | { |
| 2449 | const struct ledger_entry *le = |
| 2450 | ledger_entry_identifier_to_entry(ledger, id: entry); |
| 2451 | const ledger_amount_t limit = le->le_limit; |
| 2452 | const ledger_amount_t balance = le->le_credit - le->le_debit; |
| 2453 | |
| 2454 | /* +1 here as the limit isn't hit until the limit is exceeded. */ |
| 2455 | return limit > balance ? limit - balance + 1 : 0; |
| 2456 | } |
| 2457 | |
| 2458 | /* |
| 2459 | * Balances the ledger by modifying the debit only and sets the last refill time |
| 2460 | * to `now`. |
| 2461 | * WARNING: It is up to the caller to enforce consistency. |
| 2462 | * Must be a valid, active, full-sized ledger. |
| 2463 | */ |
| 2464 | void |
| 2465 | ledger_restart(ledger_t ledger, int entry, uint64_t now) |
| 2466 | { |
| 2467 | struct ledger_entry *le = ledger_entry_identifier_to_entry(ledger, id: entry); |
| 2468 | |
| 2469 | le->le_debit = le->le_credit; |
| 2470 | le->_le.le_refill.le_last_refill = now; |
| 2471 | } |
| 2472 | |
| 2473 | /* |
| 2474 | * Returns the amount of time that would have to pass to expire the current |
| 2475 | * interval. |
| 2476 | * Must be a valid, active, full-sized ledger. |
| 2477 | */ |
| 2478 | uint64_t |
| 2479 | ledger_get_interval_remaining(ledger_t ledger, int entry, uint64_t now) |
| 2480 | { |
| 2481 | const struct ledger_entry *le = |
| 2482 | ledger_entry_identifier_to_entry(ledger, id: entry); |
| 2483 | |
| 2484 | if ((now - le->_le.le_refill.le_last_refill) > |
| 2485 | le->_le.le_refill.le_refill_period) { |
| 2486 | return 0; |
| 2487 | } else { |
| 2488 | return le->_le.le_refill.le_refill_period - |
| 2489 | (now - le->_le.le_refill.le_last_refill) + 1; |
| 2490 | } |
| 2491 | } |
| 2492 | |
| 2493 | #ifdef LEDGER_DEBUG |
| 2494 | int |
| 2495 | ledger_limit(task_t task, struct ledger_limit_args *args) |
| 2496 | { |
| 2497 | ledger_t l; |
| 2498 | int64_t limit; |
| 2499 | int idx; |
| 2500 | |
| 2501 | if ((l = task->ledger) == NULL) { |
| 2502 | return EINVAL; |
| 2503 | } |
| 2504 | |
| 2505 | idx = ledger_key_lookup(l->l_template, args->lla_name); |
| 2506 | if (idx < 0) { |
| 2507 | return EINVAL; |
| 2508 | } |
| 2509 | if (ENTRY_ID_SIZE(idx) == sizeof(ledger_entry_small)) { |
| 2510 | /* Small entries can't have limits */ |
| 2511 | return EINVAL; |
| 2512 | } |
| 2513 | |
| 2514 | /* |
| 2515 | * XXX - this doesn't really seem like the right place to have |
| 2516 | * a context-sensitive conversion of userspace units into kernel |
| 2517 | * units. For now I'll handwave and say that the ledger() system |
| 2518 | * call isn't meant for civilians to use - they should be using |
| 2519 | * the process policy interfaces. |
| 2520 | */ |
| 2521 | if (idx == task_ledgers.cpu_time) { |
| 2522 | int64_t nsecs; |
| 2523 | |
| 2524 | if (args->lla_refill_period) { |
| 2525 | /* |
| 2526 | * If a refill is scheduled, then the limit is |
| 2527 | * specified as a percentage of one CPU. The |
| 2528 | * syscall specifies the refill period in terms of |
| 2529 | * milliseconds, so we need to convert to nsecs. |
| 2530 | */ |
| 2531 | args->lla_refill_period *= 1000000; |
| 2532 | nsecs = args->lla_limit * |
| 2533 | (args->lla_refill_period / 100); |
| 2534 | lprintf(("CPU limited to %lld nsecs per second\n" , |
| 2535 | nsecs)); |
| 2536 | } else { |
| 2537 | /* |
| 2538 | * If no refill is scheduled, then this is a |
| 2539 | * fixed amount of CPU time (in nsecs) that can |
| 2540 | * be consumed. |
| 2541 | */ |
| 2542 | nsecs = args->lla_limit; |
| 2543 | lprintf(("CPU limited to %lld nsecs\n" , nsecs)); |
| 2544 | } |
| 2545 | limit = nsecs_to_abstime(nsecs); |
| 2546 | } else { |
| 2547 | limit = args->lla_limit; |
| 2548 | lprintf(("%s limited to %lld\n" , args->lla_name, limit)); |
| 2549 | } |
| 2550 | |
| 2551 | if (args->lla_refill_period > 0) { |
| 2552 | ledger_set_period(l, idx, args->lla_refill_period); |
| 2553 | } |
| 2554 | |
| 2555 | ledger_set_limit(l, idx, limit); |
| 2556 | |
| 2557 | flag_set(ledger_entry_identifier_to_entry(l, idx)->le_flags, LEDGER_ACTION_BLOCK); |
| 2558 | return 0; |
| 2559 | } |
| 2560 | #endif |
| 2561 | |
| 2562 | /* |
| 2563 | * Adjust the diag mem threshold limit of a resource. The diag mem threshold limit only |
| 2564 | * works prescaled by 20 bits (mb) |
| 2565 | */ |
| 2566 | #if DEBUG || DEVELOPMENT |
| 2567 | kern_return_t |
| 2568 | ledger_set_diag_mem_threshold(ledger_t ledger, int entry, ledger_amount_t limit) |
| 2569 | { |
| 2570 | struct ledger_entry *le; |
| 2571 | |
| 2572 | if (!is_entry_valid_and_active(ledger, entry)) { |
| 2573 | return KERN_INVALID_VALUE; |
| 2574 | } |
| 2575 | |
| 2576 | if (ENTRY_ID_SIZE(entry) != sizeof(struct ledger_entry)) { |
| 2577 | /* Small entries can't have limits */ |
| 2578 | return KERN_INVALID_ARGUMENT; |
| 2579 | } |
| 2580 | |
| 2581 | lprintf(("ledger_set_diag mem threshold_limit: %lld\n" , limit)); |
| 2582 | le = ledger_entry_identifier_to_entry(ledger, entry); |
| 2583 | le->le_diag_threshold_scaled = (int16_t)LEDGER_DIAG_MEM_AMOUNT_TO_THRESHOLD(limit); |
| 2584 | lprintf(("ledger_set_diag mem threshold_limit new : %lld\n" , limit)); |
| 2585 | flag_clear(&le->le_flags, LF_DIAG_WARNED); |
| 2586 | |
| 2587 | return KERN_SUCCESS; |
| 2588 | } |
| 2589 | |
| 2590 | kern_return_t |
| 2591 | ledger_get_diag_mem_threshold(ledger_t ledger, int entry, ledger_amount_t *limit) |
| 2592 | { |
| 2593 | struct ledger_entry *le; |
| 2594 | |
| 2595 | if (!is_entry_valid_and_active(ledger, entry)) { |
| 2596 | return KERN_INVALID_VALUE; |
| 2597 | } |
| 2598 | |
| 2599 | if (ENTRY_ID_SIZE(entry) != sizeof(struct ledger_entry)) { |
| 2600 | /* Small entries can't have limits */ |
| 2601 | *limit = LEDGER_LIMIT_INFINITY; |
| 2602 | } else { |
| 2603 | le = ledger_entry_identifier_to_entry(ledger, entry); |
| 2604 | if (le->le_diag_threshold_scaled == LEDGER_DIAG_MEM_THRESHOLD_INFINITY) { |
| 2605 | *limit = LEDGER_LIMIT_INFINITY; |
| 2606 | } else { |
| 2607 | *limit = LEDGER_DIAG_MEM_AMOUNT_FROM_THRESHOLD(le->le_diag_threshold_scaled); |
| 2608 | } |
| 2609 | } |
| 2610 | |
| 2611 | lprintf(("ledger_get_diag mem threshold_limit: %lld\n" , *limit)); |
| 2612 | |
| 2613 | return KERN_SUCCESS; |
| 2614 | } |
| 2615 | |
| 2616 | static inline void |
| 2617 | ledger_set_diag_mem_threshold_flag_disabled_internal(struct ledger_entry *le, bool value) |
| 2618 | { |
| 2619 | if (value == true) { |
| 2620 | flag_set(&le->le_flags, LF_DIAG_DISABLED); |
| 2621 | } else { |
| 2622 | flag_clear(&le->le_flags, LF_DIAG_DISABLED); |
| 2623 | } |
| 2624 | } |
| 2625 | |
| 2626 | static inline bool |
| 2627 | ledger_is_diag_threshold_enabled_internal( struct ledger_entry *le) |
| 2628 | { |
| 2629 | return ((le->le_flags & LF_DIAG_DISABLED) == 0)? true : false; |
| 2630 | } |
| 2631 | |
| 2632 | /** |
| 2633 | * Disable the diagnostics threshold due to overlap with footprint limit |
| 2634 | */ |
| 2635 | kern_return_t |
| 2636 | ledger_set_diag_mem_threshold_disabled(ledger_t ledger, int entry) |
| 2637 | { |
| 2638 | struct ledger_entry *le; |
| 2639 | |
| 2640 | if (!is_entry_valid_and_active(ledger, entry)) { |
| 2641 | return KERN_INVALID_VALUE; |
| 2642 | } |
| 2643 | |
| 2644 | if (ENTRY_ID_SIZE(entry) != sizeof(struct ledger_entry)) { |
| 2645 | /* Small entries can't have limits */ |
| 2646 | return KERN_INVALID_ARGUMENT; |
| 2647 | } |
| 2648 | |
| 2649 | lprintf(("ledger_set_diag_mem_threshold_disabled" )); |
| 2650 | le = ledger_entry_identifier_to_entry(ledger, entry); |
| 2651 | if (le->le_diag_threshold_scaled == LEDGER_DIAG_MEM_THRESHOLD_INFINITY) { |
| 2652 | lprintf(("ledger_set_diag_mem_threshold_disabled, cannot disable a ledger entry that have no value, returning error" )); |
| 2653 | return KERN_INVALID_ARGUMENT; |
| 2654 | } |
| 2655 | ledger_set_diag_mem_threshold_flag_disabled_internal(le, true); |
| 2656 | return KERN_SUCCESS; |
| 2657 | } |
| 2658 | /** |
| 2659 | * Enable the diagnostics threshold for a specific entry |
| 2660 | */ |
| 2661 | kern_return_t |
| 2662 | ledger_set_diag_mem_threshold_enabled(ledger_t ledger, int entry) |
| 2663 | { |
| 2664 | struct ledger_entry *le; |
| 2665 | |
| 2666 | if (!is_entry_valid_and_active(ledger, entry)) { |
| 2667 | return KERN_INVALID_VALUE; |
| 2668 | } |
| 2669 | |
| 2670 | if (ENTRY_ID_SIZE(entry) != sizeof(struct ledger_entry)) { |
| 2671 | /* Small entries can't have limits */ |
| 2672 | return KERN_INVALID_ARGUMENT; |
| 2673 | } |
| 2674 | |
| 2675 | lprintf(("ledger_set_diag_mem_threshold_enabled" )); |
| 2676 | le = ledger_entry_identifier_to_entry(ledger, entry); |
| 2677 | /* |
| 2678 | * if (le->le_diag_threshold_scaled == LEDGER_DIAG_MEM_THRESHOLD_INFINITY) { |
| 2679 | * lprintf(("ledger_set_diag_mem_threshold_enabled, cannot disable a ledger entry that have no value, returning error")); |
| 2680 | * return KERN_INVALID_ARGUMENT; |
| 2681 | * } |
| 2682 | */ |
| 2683 | ledger_set_diag_mem_threshold_flag_disabled_internal(le, false); |
| 2684 | |
| 2685 | return KERN_SUCCESS; |
| 2686 | } |
| 2687 | /** |
| 2688 | * Obtain the diagnostics threshold enabled flag. If the diagnostics threshold is enabled, returns true |
| 2689 | * else returns false. |
| 2690 | */ |
| 2691 | kern_return_t |
| 2692 | ledger_is_diag_threshold_enabled(ledger_t ledger, int entry, bool *status) |
| 2693 | { |
| 2694 | struct ledger_entry *le; |
| 2695 | |
| 2696 | if (!is_entry_valid_and_active(ledger, entry)) { |
| 2697 | return KERN_INVALID_VALUE; |
| 2698 | } |
| 2699 | |
| 2700 | if (ENTRY_ID_SIZE(entry) != sizeof(struct ledger_entry)) { |
| 2701 | /* Small entries can't have limits */ |
| 2702 | return KERN_INVALID_ARGUMENT; |
| 2703 | } |
| 2704 | |
| 2705 | lprintf(("ledger_is_diag_threshold_enabled" )); |
| 2706 | le = ledger_entry_identifier_to_entry(ledger, entry); |
| 2707 | /* |
| 2708 | * if (le->le_diag_threshold_scaled == LEDGER_DIAG_MEM_THRESHOLD_INFINITY) { |
| 2709 | * lprintf(("ledger_is_diag_threshold_enabled, get enabled flag for a ledger entry that have no value, returning error")); |
| 2710 | * return KERN_INVALID_ARGUMENT; |
| 2711 | * } |
| 2712 | */ |
| 2713 | *status = ledger_is_diag_threshold_enabled_internal(le); |
| 2714 | return KERN_SUCCESS; |
| 2715 | } |
| 2716 | #endif // DEBUG || DEVELOPMENT |
| 2717 | |