| 1 | /* |
| 2 | * Copyright (c) 2015 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <kern/assert.h> |
| 30 | #include <mach/mach_types.h> |
| 31 | #include <mach/boolean.h> |
| 32 | #include <mach/vm_param.h> |
| 33 | #include <kern/kern_types.h> |
| 34 | #include <kern/mach_param.h> |
| 35 | #include <kern/thread.h> |
| 36 | #include <kern/task.h> |
| 37 | #include <kern/kern_cdata.h> |
| 38 | #include <kern/kalloc.h> |
| 39 | #include <kern/ipc_kobject.h> |
| 40 | #include <mach/mach_vm.h> |
| 41 | |
| 42 | static kern_return_t kcdata_get_memory_addr_with_flavor(kcdata_descriptor_t data, uint32_t type, uint32_t size, uint64_t flags, mach_vm_address_t *user_addr); |
| 43 | static size_t kcdata_get_memory_size_for_data(uint32_t size); |
| 44 | static kern_return_t kcdata_compress_chunk_with_flags(kcdata_descriptor_t data, uint32_t type, const void *input_data, uint32_t input_size, uint64_t flags); |
| 45 | static kern_return_t kcdata_compress_chunk(kcdata_descriptor_t data, uint32_t type, const void *input_data, uint32_t input_size); |
| 46 | static kern_return_t kcdata_write_compression_stats(kcdata_descriptor_t data); |
| 47 | static kern_return_t kcdata_get_compression_stats(kcdata_descriptor_t data, uint64_t *totalout, uint64_t *totalin); |
| 48 | static void kcdata_object_no_senders(ipc_port_t port, mach_port_mscount_t mscount); |
| 49 | |
| 50 | #ifndef ROUNDUP |
| 51 | #define ROUNDUP(x, y) ((((x)+(y)-1)/(y))*(y)) |
| 52 | #endif |
| 53 | |
| 54 | /* |
| 55 | * zlib will need to store its metadata and this value is indifferent from the |
| 56 | * window bits and other zlib internals |
| 57 | */ |
| 58 | #define ZLIB_METADATA_SIZE 1440 |
| 59 | |
| 60 | /* #define kcdata_debug_printf printf */ |
| 61 | #define kcdata_debug_printf(...) ; |
| 62 | |
| 63 | #pragma pack(push, 4) |
| 64 | |
| 65 | /* Internal structs for convenience */ |
| 66 | struct _uint64_with_description_data { |
| 67 | char desc[KCDATA_DESC_MAXLEN]; |
| 68 | uint64_t data; |
| 69 | }; |
| 70 | |
| 71 | struct _uint32_with_description_data { |
| 72 | char desc[KCDATA_DESC_MAXLEN]; |
| 73 | uint32_t data; |
| 74 | }; |
| 75 | |
| 76 | #pragma pack(pop) |
| 77 | |
| 78 | int _Atomic lw_corpse_obj_cnt = 0; |
| 79 | |
| 80 | IPC_KOBJECT_DEFINE(IKOT_KCDATA, |
| 81 | .iko_op_stable = true, |
| 82 | .iko_op_no_senders = kcdata_object_no_senders); |
| 83 | |
| 84 | KALLOC_TYPE_DEFINE(KCDATA_OBJECT, struct kcdata_object, KT_DEFAULT); |
| 85 | |
| 86 | os_refgrp_decl(static, kcdata_object_refgrp, "kcdata_object" , NULL); |
| 87 | |
| 88 | /* Grab a throttle slot for rate-limited kcdata object type(s) */ |
| 89 | kern_return_t |
| 90 | kcdata_object_throttle_get( |
| 91 | kcdata_obj_flags_t flags) |
| 92 | { |
| 93 | int oval, nval; |
| 94 | |
| 95 | /* Currently only lightweight corpse is rate-limited */ |
| 96 | assert(flags & KCDATA_OBJECT_TYPE_LW_CORPSE); |
| 97 | if (flags & KCDATA_OBJECT_TYPE_LW_CORPSE) { |
| 98 | os_atomic_rmw_loop(&lw_corpse_obj_cnt, oval, nval, relaxed, { |
| 99 | if (oval >= MAX_INFLIGHT_KCOBJECT_LW_CORPSE) { |
| 100 | printf("Too many lightweight corpse in flight: %d\n" , oval); |
| 101 | os_atomic_rmw_loop_give_up(return KERN_RESOURCE_SHORTAGE); |
| 102 | } |
| 103 | nval = oval + 1; |
| 104 | }); |
| 105 | } |
| 106 | |
| 107 | return KERN_SUCCESS; |
| 108 | } |
| 109 | |
| 110 | /* Release a throttle slot for rate-limited kcdata object type(s) */ |
| 111 | void |
| 112 | kcdata_object_throttle_release( |
| 113 | kcdata_obj_flags_t flags) |
| 114 | { |
| 115 | int oval, nval; |
| 116 | |
| 117 | /* Currently only lightweight corpse is rate-limited */ |
| 118 | assert(flags & KCDATA_OBJECT_TYPE_LW_CORPSE); |
| 119 | if (flags & KCDATA_OBJECT_TYPE_LW_CORPSE) { |
| 120 | os_atomic_rmw_loop(&lw_corpse_obj_cnt, oval, nval, relaxed, { |
| 121 | nval = oval - 1; |
| 122 | if (__improbable(nval < 0)) { |
| 123 | os_atomic_rmw_loop_give_up(panic("Lightweight corpse kcdata object over-released" )); |
| 124 | } |
| 125 | }); |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | /* |
| 130 | * Create an object representation for the given kcdata. |
| 131 | * |
| 132 | * Captures kcdata descripter ref in object. If the object creation |
| 133 | * should be rate-limited, kcdata_object_throttle_get() must be called |
| 134 | * manually before invoking kcdata_create_object(), so as to save |
| 135 | * work (of creating the enclosed kcdata blob) if a throttled reference |
| 136 | * cannot be obtained in the first place. |
| 137 | */ |
| 138 | kern_return_t |
| 139 | kcdata_create_object( |
| 140 | kcdata_descriptor_t data, |
| 141 | kcdata_obj_flags_t flags, |
| 142 | uint32_t size, |
| 143 | kcdata_object_t *objp) |
| 144 | { |
| 145 | kcdata_object_t obj; |
| 146 | |
| 147 | if (data == NULL) { |
| 148 | return KERN_INVALID_ARGUMENT; |
| 149 | } |
| 150 | |
| 151 | obj = zalloc_flags(KCDATA_OBJECT, |
| 152 | Z_ZERO | Z_WAITOK | Z_NOFAIL | Z_SET_NOTSHARED); |
| 153 | |
| 154 | obj->ko_data = data; |
| 155 | obj->ko_flags = flags; |
| 156 | obj->ko_alloc_size = size; |
| 157 | obj->ko_port = IP_NULL; |
| 158 | |
| 159 | os_ref_init_count(&obj->ko_refs, &kcdata_object_refgrp, 1); |
| 160 | |
| 161 | *objp = obj; |
| 162 | |
| 163 | return KERN_SUCCESS; |
| 164 | } |
| 165 | |
| 166 | void |
| 167 | kcdata_object_reference(kcdata_object_t obj) |
| 168 | { |
| 169 | if (obj == KCDATA_OBJECT_NULL) { |
| 170 | return; |
| 171 | } |
| 172 | |
| 173 | os_ref_retain(rc: &obj->ko_refs); |
| 174 | } |
| 175 | |
| 176 | static void |
| 177 | kcdata_object_destroy(kcdata_object_t obj) |
| 178 | { |
| 179 | void *begin_addr; |
| 180 | ipc_port_t port; |
| 181 | kcdata_obj_flags_t flags; |
| 182 | |
| 183 | if (obj == KCDATA_OBJECT_NULL) { |
| 184 | return; |
| 185 | } |
| 186 | |
| 187 | port = obj->ko_port; |
| 188 | flags = obj->ko_flags; |
| 189 | |
| 190 | /* Release the port */ |
| 191 | if (IP_VALID(port)) { |
| 192 | ipc_kobject_dealloc_port(port, mscount: 0, type: IKOT_KCDATA); |
| 193 | } |
| 194 | |
| 195 | /* Release the ref for rate-limited kcdata object type(s) */ |
| 196 | kcdata_object_throttle_release(flags); |
| 197 | |
| 198 | /* Destroy the kcdata backing captured in the object */ |
| 199 | begin_addr = kcdata_memory_get_begin_addr(data: obj->ko_data); |
| 200 | kfree_data(begin_addr, obj->ko_alloc_size); |
| 201 | kcdata_memory_destroy(data: obj->ko_data); |
| 202 | |
| 203 | /* Free the object */ |
| 204 | zfree(KCDATA_OBJECT, obj); |
| 205 | } |
| 206 | |
| 207 | void |
| 208 | kcdata_object_release(kcdata_object_t obj) |
| 209 | { |
| 210 | if (obj == KCDATA_OBJECT_NULL) { |
| 211 | return; |
| 212 | } |
| 213 | |
| 214 | if (os_ref_release(rc: &obj->ko_refs) > 0) { |
| 215 | return; |
| 216 | } |
| 217 | /* last ref */ |
| 218 | |
| 219 | kcdata_object_destroy(obj); |
| 220 | } |
| 221 | |
| 222 | /* Produces kcdata object ref */ |
| 223 | kcdata_object_t |
| 224 | convert_port_to_kcdata_object(ipc_port_t port) |
| 225 | { |
| 226 | kcdata_object_t obj = KCDATA_OBJECT_NULL; |
| 227 | |
| 228 | if (IP_VALID(port)) { |
| 229 | obj = ipc_kobject_get_stable(port, type: IKOT_KCDATA); |
| 230 | if (obj != KCDATA_OBJECT_NULL) { |
| 231 | zone_require(zone: KCDATA_OBJECT->kt_zv.zv_zone, addr: obj); |
| 232 | kcdata_object_reference(obj); |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | return obj; |
| 237 | } |
| 238 | |
| 239 | /* Consumes kcdata object ref */ |
| 240 | ipc_port_t |
| 241 | convert_kcdata_object_to_port(kcdata_object_t obj) |
| 242 | { |
| 243 | if (obj == KCDATA_OBJECT_NULL) { |
| 244 | return IP_NULL; |
| 245 | } |
| 246 | |
| 247 | zone_require(zone: KCDATA_OBJECT->kt_zv.zv_zone, addr: obj); |
| 248 | |
| 249 | if (!ipc_kobject_make_send_lazy_alloc_port(port_store: &obj->ko_port, |
| 250 | kobject: obj, type: IKOT_KCDATA, alloc_opts: IPC_KOBJECT_ALLOC_NONE)) { |
| 251 | kcdata_object_release(obj); |
| 252 | } |
| 253 | /* object ref consumed */ |
| 254 | |
| 255 | return obj->ko_port; |
| 256 | } |
| 257 | |
| 258 | static void |
| 259 | kcdata_object_no_senders( |
| 260 | ipc_port_t port, |
| 261 | __unused mach_port_mscount_t mscount) |
| 262 | { |
| 263 | kcdata_object_t obj; |
| 264 | |
| 265 | obj = ipc_kobject_get_stable(port, type: IKOT_KCDATA); |
| 266 | assert(obj != KCDATA_OBJECT_NULL); |
| 267 | |
| 268 | /* release the ref given by no-senders notification */ |
| 269 | kcdata_object_release(obj); |
| 270 | } |
| 271 | |
| 272 | /* |
| 273 | * Estimates how large of a buffer that should be allocated for a buffer that will contain |
| 274 | * num_items items of known types with overall length payload_size. |
| 275 | * |
| 276 | * NOTE: This function will not give an accurate estimate for buffers that will |
| 277 | * contain unknown types (those with string descriptions). |
| 278 | */ |
| 279 | uint32_t |
| 280 | kcdata_estimate_required_buffer_size(uint32_t num_items, uint32_t payload_size) |
| 281 | { |
| 282 | /* |
| 283 | * In the worst case each item will need (KCDATA_ALIGNMENT_SIZE - 1) padding |
| 284 | */ |
| 285 | uint32_t max_padding_bytes = 0; |
| 286 | uint32_t max_padding_with_item_description_bytes = 0; |
| 287 | uint32_t estimated_required_buffer_size = 0; |
| 288 | const uint32_t begin_and_end_marker_bytes = 2 * sizeof(struct kcdata_item); |
| 289 | |
| 290 | if (os_mul_overflow(num_items, KCDATA_ALIGNMENT_SIZE - 1, &max_padding_bytes)) { |
| 291 | panic("%s: Overflow in required buffer size estimate" , __func__); |
| 292 | } |
| 293 | |
| 294 | if (os_mul_and_add_overflow(num_items, sizeof(struct kcdata_item), max_padding_bytes, &max_padding_with_item_description_bytes)) { |
| 295 | panic("%s: Overflow in required buffer size estimate" , __func__); |
| 296 | } |
| 297 | |
| 298 | if (os_add3_overflow(max_padding_with_item_description_bytes, begin_and_end_marker_bytes, payload_size, &estimated_required_buffer_size)) { |
| 299 | panic("%s: Overflow in required buffer size estimate" , __func__); |
| 300 | } |
| 301 | |
| 302 | return estimated_required_buffer_size; |
| 303 | } |
| 304 | |
| 305 | kcdata_descriptor_t |
| 306 | kcdata_memory_alloc_init(mach_vm_address_t buffer_addr_p, unsigned data_type, unsigned size, unsigned flags) |
| 307 | { |
| 308 | kcdata_descriptor_t data = NULL; |
| 309 | mach_vm_address_t user_addr = 0; |
| 310 | uint16_t clamped_flags = (uint16_t) flags; |
| 311 | |
| 312 | data = kalloc_type(struct kcdata_descriptor, Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 313 | data->kcd_addr_begin = buffer_addr_p; |
| 314 | data->kcd_addr_end = buffer_addr_p; |
| 315 | data->kcd_flags = (clamped_flags & KCFLAG_USE_COPYOUT) ? clamped_flags : clamped_flags | KCFLAG_USE_MEMCOPY; |
| 316 | data->kcd_length = size; |
| 317 | data->kcd_endalloced = 0; |
| 318 | |
| 319 | /* Initialize the BEGIN header */ |
| 320 | if (KERN_SUCCESS != kcdata_get_memory_addr(data, type: data_type, size: 0, user_addr: &user_addr)) { |
| 321 | kcdata_memory_destroy(data); |
| 322 | return NULL; |
| 323 | } |
| 324 | |
| 325 | return data; |
| 326 | } |
| 327 | |
| 328 | kern_return_t |
| 329 | kcdata_memory_static_init(kcdata_descriptor_t data, mach_vm_address_t buffer_addr_p, unsigned data_type, unsigned size, unsigned flags) |
| 330 | { |
| 331 | mach_vm_address_t user_addr = 0; |
| 332 | uint16_t clamped_flags = (uint16_t) flags; |
| 333 | |
| 334 | if (data == NULL) { |
| 335 | return KERN_INVALID_ARGUMENT; |
| 336 | } |
| 337 | bzero(s: data, n: sizeof(struct kcdata_descriptor)); |
| 338 | data->kcd_addr_begin = buffer_addr_p; |
| 339 | data->kcd_addr_end = buffer_addr_p; |
| 340 | data->kcd_flags = (clamped_flags & KCFLAG_USE_COPYOUT) ? clamped_flags : clamped_flags | KCFLAG_USE_MEMCOPY; |
| 341 | data->kcd_length = size; |
| 342 | data->kcd_endalloced = 0; |
| 343 | |
| 344 | /* Initialize the BEGIN header */ |
| 345 | return kcdata_get_memory_addr(data, type: data_type, size: 0, user_addr: &user_addr); |
| 346 | } |
| 347 | |
| 348 | void * |
| 349 | kcdata_endalloc(kcdata_descriptor_t data, size_t length) |
| 350 | { |
| 351 | mach_vm_address_t curend = data->kcd_addr_begin + data->kcd_length; |
| 352 | /* round up allocation and ensure return value is uint64-aligned */ |
| 353 | size_t toalloc = ROUNDUP(length, sizeof(uint64_t)) + (curend % sizeof(uint64_t)); |
| 354 | /* an arbitrary limit: make sure we don't allocate more then 1/4th of the remaining buffer. */ |
| 355 | if (data->kcd_length / 4 <= toalloc) { |
| 356 | return NULL; |
| 357 | } |
| 358 | data->kcd_length -= toalloc; |
| 359 | data->kcd_endalloced += toalloc; |
| 360 | return (void *)(curend - toalloc); |
| 361 | } |
| 362 | |
| 363 | /* Zeros and releases data allocated from the end of the buffer */ |
| 364 | static void |
| 365 | kcdata_release_endallocs(kcdata_descriptor_t data) |
| 366 | { |
| 367 | mach_vm_address_t curend = data->kcd_addr_begin + data->kcd_length; |
| 368 | size_t endalloced = data->kcd_endalloced; |
| 369 | if (endalloced > 0) { |
| 370 | bzero(s: (void *)curend, n: endalloced); |
| 371 | data->kcd_length += endalloced; |
| 372 | data->kcd_endalloced = 0; |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | void * |
| 377 | kcdata_memory_get_begin_addr(kcdata_descriptor_t data) |
| 378 | { |
| 379 | if (data == NULL) { |
| 380 | return NULL; |
| 381 | } |
| 382 | |
| 383 | return (void *)data->kcd_addr_begin; |
| 384 | } |
| 385 | |
| 386 | uint64_t |
| 387 | kcdata_memory_get_used_bytes(kcdata_descriptor_t kcd) |
| 388 | { |
| 389 | assert(kcd != NULL); |
| 390 | return ((uint64_t)kcd->kcd_addr_end - (uint64_t)kcd->kcd_addr_begin) + sizeof(struct kcdata_item); |
| 391 | } |
| 392 | |
| 393 | uint64_t |
| 394 | kcdata_memory_get_uncompressed_bytes(kcdata_descriptor_t kcd) |
| 395 | { |
| 396 | kern_return_t kr; |
| 397 | |
| 398 | assert(kcd != NULL); |
| 399 | if (kcd->kcd_flags & KCFLAG_USE_COMPRESSION) { |
| 400 | uint64_t totalout, totalin; |
| 401 | |
| 402 | kr = kcdata_get_compression_stats(data: kcd, totalout: &totalout, totalin: &totalin); |
| 403 | if (kr == KERN_SUCCESS) { |
| 404 | return totalin; |
| 405 | } else { |
| 406 | return 0; |
| 407 | } |
| 408 | } else { |
| 409 | /* If compression wasn't used, get the number of bytes used */ |
| 410 | return kcdata_memory_get_used_bytes(kcd); |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | /* |
| 415 | * Free up the memory associated with kcdata |
| 416 | */ |
| 417 | kern_return_t |
| 418 | kcdata_memory_destroy(kcdata_descriptor_t data) |
| 419 | { |
| 420 | if (!data) { |
| 421 | return KERN_INVALID_ARGUMENT; |
| 422 | } |
| 423 | |
| 424 | /* |
| 425 | * data->kcd_addr_begin points to memory in not tracked by |
| 426 | * kcdata lib. So not clearing that here. |
| 427 | */ |
| 428 | kfree_type(struct kcdata_descriptor, data); |
| 429 | return KERN_SUCCESS; |
| 430 | } |
| 431 | |
| 432 | /* Used by zlib to allocate space in its metadata section */ |
| 433 | static void * |
| 434 | kcdata_compress_zalloc(void *opaque, u_int items, u_int size) |
| 435 | { |
| 436 | void *result; |
| 437 | struct kcdata_compress_descriptor *cd = opaque; |
| 438 | int alloc_size = ~31L & (31 + (items * size)); |
| 439 | |
| 440 | result = (void *)((uintptr_t)cd->kcd_cd_base + cd->kcd_cd_offset); |
| 441 | if ((uintptr_t) result + alloc_size > (uintptr_t) cd->kcd_cd_base + cd->kcd_cd_maxoffset) { |
| 442 | result = Z_NULL; |
| 443 | } else { |
| 444 | cd->kcd_cd_offset += alloc_size; |
| 445 | } |
| 446 | |
| 447 | kcdata_debug_printf("%s: %d * %d = %d => %p\n" , __func__, items, size, items * size, result); |
| 448 | |
| 449 | return result; |
| 450 | } |
| 451 | |
| 452 | /* Used by zlib to free previously allocated space in its metadata section */ |
| 453 | static void |
| 454 | kcdata_compress_zfree(void *opaque, void *ptr) |
| 455 | { |
| 456 | (void) opaque; |
| 457 | (void) ptr; |
| 458 | |
| 459 | kcdata_debug_printf("%s: ptr %p\n" , __func__, ptr); |
| 460 | |
| 461 | /* |
| 462 | * Since the buffers we are using are temporary, we don't worry about |
| 463 | * freeing memory for now. Besides, testing has shown that zlib only calls |
| 464 | * this at the end, near deflateEnd() or a Z_FINISH deflate() call. |
| 465 | */ |
| 466 | } |
| 467 | |
| 468 | /* Used to initialize the selected compression algorithm's internal state (if any) */ |
| 469 | static kern_return_t |
| 470 | kcdata_init_compress_state(kcdata_descriptor_t data, void (*memcpy_f)(void *, const void *, size_t), uint64_t type, mach_vm_address_t totalout_addr, mach_vm_address_t totalin_addr) |
| 471 | { |
| 472 | kern_return_t ret = KERN_SUCCESS; |
| 473 | size_t size; |
| 474 | int wbits = 12, memlevel = 3; |
| 475 | struct kcdata_compress_descriptor *cd = &data->kcd_comp_d; |
| 476 | |
| 477 | cd->kcd_cd_memcpy_f = memcpy_f; |
| 478 | cd->kcd_cd_compression_type = type; |
| 479 | cd->kcd_cd_totalout_addr = totalout_addr; |
| 480 | cd->kcd_cd_totalin_addr = totalin_addr; |
| 481 | |
| 482 | switch (type) { |
| 483 | case KCDCT_ZLIB: |
| 484 | /* allocate space for the metadata used by zlib */ |
| 485 | size = round_page(ZLIB_METADATA_SIZE + zlib_deflate_memory_size(wbits, memlevel)); |
| 486 | kcdata_debug_printf("%s: size = %zu kcd_length: %d\n" , __func__, size, data->kcd_length); |
| 487 | kcdata_debug_printf("%s: kcd buffer [%p - %p]\n" , __func__, (void *) data->kcd_addr_begin, (void *) data->kcd_addr_begin + data->kcd_length); |
| 488 | void *buf = kcdata_endalloc(data, length: size); |
| 489 | if (buf == NULL) { |
| 490 | return KERN_INSUFFICIENT_BUFFER_SIZE; |
| 491 | } |
| 492 | |
| 493 | cd->kcd_cd_zs.avail_in = 0; |
| 494 | cd->kcd_cd_zs.next_in = NULL; |
| 495 | cd->kcd_cd_zs.avail_out = 0; |
| 496 | cd->kcd_cd_zs.next_out = NULL; |
| 497 | cd->kcd_cd_zs.opaque = cd; |
| 498 | cd->kcd_cd_zs.zalloc = kcdata_compress_zalloc; |
| 499 | cd->kcd_cd_zs.zfree = kcdata_compress_zfree; |
| 500 | cd->kcd_cd_base = (void *)(data->kcd_addr_begin + data->kcd_length - size); |
| 501 | data->kcd_length -= size; |
| 502 | cd->kcd_cd_offset = 0; |
| 503 | cd->kcd_cd_maxoffset = size; |
| 504 | cd->kcd_cd_flags = 0; |
| 505 | |
| 506 | kcdata_debug_printf("%s: buffer [%p - %p]\n" , __func__, cd->kcd_cd_base, cd->kcd_cd_base + size); |
| 507 | |
| 508 | if (deflateInit2(&cd->kcd_cd_zs, Z_BEST_SPEED, Z_DEFLATED, wbits, memlevel, Z_DEFAULT_STRATEGY) != Z_OK) { |
| 509 | kcdata_debug_printf("EMERGENCY: deflateInit2 failed!\n" ); |
| 510 | ret = KERN_INVALID_ARGUMENT; |
| 511 | } |
| 512 | break; |
| 513 | default: |
| 514 | panic("kcdata_init_compress_state: invalid compression type: %d" , (int) type); |
| 515 | } |
| 516 | |
| 517 | return ret; |
| 518 | } |
| 519 | |
| 520 | |
| 521 | /* |
| 522 | * Turn on the compression logic for kcdata |
| 523 | */ |
| 524 | kern_return_t |
| 525 | kcdata_init_compress(kcdata_descriptor_t data, int hdr_tag, void (*memcpy_f)(void *, const void *, size_t), uint64_t type) |
| 526 | { |
| 527 | kern_return_t kr; |
| 528 | mach_vm_address_t user_addr, totalout_addr, totalin_addr; |
| 529 | struct _uint64_with_description_data save_data; |
| 530 | const uint64_t size_req = sizeof(save_data); |
| 531 | |
| 532 | assert(data && (data->kcd_flags & KCFLAG_USE_COMPRESSION) == 0); |
| 533 | |
| 534 | /* reset the compression descriptor */ |
| 535 | bzero(s: &data->kcd_comp_d, n: sizeof(struct kcdata_compress_descriptor)); |
| 536 | |
| 537 | /* add the header information */ |
| 538 | kcdata_add_uint64_with_description(crashinfo: data, data: type, description: "kcd_c_type" ); |
| 539 | |
| 540 | /* reserve space to write total out */ |
| 541 | bzero(s: &save_data, n: size_req); |
| 542 | strlcpy(dst: &(save_data.desc[0]), src: "kcd_c_totalout" , n: sizeof(save_data.desc)); |
| 543 | kr = kcdata_get_memory_addr(data, KCDATA_TYPE_UINT64_DESC, size: size_req, user_addr: &totalout_addr); |
| 544 | if (kr != KERN_SUCCESS) { |
| 545 | return kr; |
| 546 | } |
| 547 | memcpy(dst: (void *)totalout_addr, src: &save_data, n: size_req); |
| 548 | |
| 549 | /* space for total in */ |
| 550 | bzero(s: &save_data, n: size_req); |
| 551 | strlcpy(dst: &(save_data.desc[0]), src: "kcd_c_totalin" , n: sizeof(save_data.desc)); |
| 552 | kr = kcdata_get_memory_addr(data, KCDATA_TYPE_UINT64_DESC, size: size_req, user_addr: &totalin_addr); |
| 553 | if (kr != KERN_SUCCESS) { |
| 554 | return kr; |
| 555 | } |
| 556 | memcpy(dst: (void *)totalin_addr, src: &save_data, n: size_req); |
| 557 | |
| 558 | /* add the inner buffer */ |
| 559 | kcdata_get_memory_addr(data, type: hdr_tag, size: 0, user_addr: &user_addr); |
| 560 | |
| 561 | /* save the flag */ |
| 562 | data->kcd_flags |= KCFLAG_USE_COMPRESSION; |
| 563 | |
| 564 | /* initialize algorithm specific state */ |
| 565 | kr = kcdata_init_compress_state(data, memcpy_f, type, totalout_addr: totalout_addr + offsetof(struct _uint64_with_description_data, data), totalin_addr: totalin_addr + offsetof(struct _uint64_with_description_data, data)); |
| 566 | if (kr != KERN_SUCCESS) { |
| 567 | kcdata_debug_printf("%s: failed to initialize compression state!\n" , __func__); |
| 568 | return kr; |
| 569 | } |
| 570 | |
| 571 | return KERN_SUCCESS; |
| 572 | } |
| 573 | |
| 574 | static inline |
| 575 | int |
| 576 | kcdata_zlib_translate_kcd_cf_flag(enum kcdata_compression_flush flush) |
| 577 | { |
| 578 | switch (flush) { |
| 579 | case KCDCF_NO_FLUSH: return Z_NO_FLUSH; |
| 580 | case KCDCF_SYNC_FLUSH: return Z_SYNC_FLUSH; |
| 581 | case KCDCF_FINISH: return Z_FINISH; |
| 582 | default: panic("invalid kcdata_zlib_translate_kcd_cf_flag flag" ); |
| 583 | } |
| 584 | } |
| 585 | |
| 586 | static inline |
| 587 | int |
| 588 | kcdata_zlib_translate_kcd_cf_expected_ret(enum kcdata_compression_flush flush) |
| 589 | { |
| 590 | switch (flush) { |
| 591 | case KCDCF_NO_FLUSH: /* fall through */ |
| 592 | case KCDCF_SYNC_FLUSH: return Z_OK; |
| 593 | case KCDCF_FINISH: return Z_STREAM_END; |
| 594 | default: panic("invalid kcdata_zlib_translate_kcd_cf_expected_ret flag" ); |
| 595 | } |
| 596 | } |
| 597 | |
| 598 | /* Called by kcdata_do_compress() when the configured compression algorithm is zlib */ |
| 599 | static kern_return_t |
| 600 | kcdata_do_compress_zlib(kcdata_descriptor_t data, void *inbuffer, |
| 601 | size_t insize, void *outbuffer, size_t outsize, size_t *wrote, |
| 602 | enum kcdata_compression_flush flush) |
| 603 | { |
| 604 | struct kcdata_compress_descriptor *cd = &data->kcd_comp_d; |
| 605 | z_stream *zs = &cd->kcd_cd_zs; |
| 606 | int expected_ret, ret; |
| 607 | |
| 608 | zs->next_out = outbuffer; |
| 609 | zs->avail_out = (unsigned int) outsize; |
| 610 | zs->next_in = inbuffer; |
| 611 | zs->avail_in = (unsigned int) insize; |
| 612 | ret = deflate(strm: zs, flush: kcdata_zlib_translate_kcd_cf_flag(flush)); |
| 613 | if (zs->avail_in != 0 || zs->avail_out <= 0) { |
| 614 | return KERN_INSUFFICIENT_BUFFER_SIZE; |
| 615 | } |
| 616 | |
| 617 | expected_ret = kcdata_zlib_translate_kcd_cf_expected_ret(flush); |
| 618 | if (ret != expected_ret) { |
| 619 | /* |
| 620 | * Should only fail with catastrophic, unrecoverable cases (i.e., |
| 621 | * corrupted z_stream, or incorrect configuration) |
| 622 | */ |
| 623 | panic("zlib kcdata compression ret = %d" , ret); |
| 624 | } |
| 625 | |
| 626 | kcdata_debug_printf("%s: %p (%zu) <- %p (%zu); flush: %d; ret = %ld\n" , |
| 627 | __func__, outbuffer, outsize, inbuffer, insize, flush, outsize - zs->avail_out); |
| 628 | if (wrote) { |
| 629 | *wrote = outsize - zs->avail_out; |
| 630 | } |
| 631 | return KERN_SUCCESS; |
| 632 | } |
| 633 | |
| 634 | /* |
| 635 | * Compress the buffer at @inbuffer (of size @insize) into the kcdata buffer |
| 636 | * @outbuffer (of size @outsize). Flush based on the @flush parameter. |
| 637 | * |
| 638 | * Returns KERN_SUCCESS on success, or KERN_INSUFFICIENT_BUFFER_SIZE if |
| 639 | * @outsize isn't sufficient. Also, writes the number of bytes written in the |
| 640 | * @outbuffer to @wrote. |
| 641 | */ |
| 642 | static kern_return_t |
| 643 | kcdata_do_compress(kcdata_descriptor_t data, void *inbuffer, size_t insize, |
| 644 | void *outbuffer, size_t outsize, size_t *wrote, enum kcdata_compression_flush flush) |
| 645 | { |
| 646 | struct kcdata_compress_descriptor *cd = &data->kcd_comp_d; |
| 647 | |
| 648 | assert(data->kcd_flags & KCFLAG_USE_COMPRESSION); |
| 649 | |
| 650 | kcdata_debug_printf("%s: %p (%zu) <- %p (%zu); flush: %d\n" , |
| 651 | __func__, outbuffer, outsize, inbuffer, insize, flush); |
| 652 | |
| 653 | /* don't compress if we are in a window */ |
| 654 | if (cd->kcd_cd_flags & KCD_CD_FLAG_IN_MARK || data->kcd_comp_d.kcd_cd_compression_type == KCDCT_NONE) { |
| 655 | assert(cd->kcd_cd_memcpy_f); |
| 656 | if (outsize >= insize) { |
| 657 | cd->kcd_cd_memcpy_f(outbuffer, inbuffer, insize); |
| 658 | if (wrote) { |
| 659 | *wrote = insize; |
| 660 | } |
| 661 | return KERN_SUCCESS; |
| 662 | } else { |
| 663 | return KERN_INSUFFICIENT_BUFFER_SIZE; |
| 664 | } |
| 665 | } |
| 666 | |
| 667 | switch (data->kcd_comp_d.kcd_cd_compression_type) { |
| 668 | case KCDCT_ZLIB: |
| 669 | return kcdata_do_compress_zlib(data, inbuffer, insize, outbuffer, outsize, wrote, flush); |
| 670 | default: |
| 671 | panic("invalid compression type 0x%llx in kcdata_do_compress" , data->kcd_comp_d.kcd_cd_compression_type); |
| 672 | } |
| 673 | } |
| 674 | |
| 675 | static size_t |
| 676 | kcdata_compression_bound_zlib(kcdata_descriptor_t data, size_t size) |
| 677 | { |
| 678 | struct kcdata_compress_descriptor *cd = &data->kcd_comp_d; |
| 679 | z_stream *zs = &cd->kcd_cd_zs; |
| 680 | |
| 681 | return (size_t) deflateBound(strm: zs, sourceLen: (unsigned long) size); |
| 682 | } |
| 683 | |
| 684 | |
| 685 | /* |
| 686 | * returns the worst-case, maximum length of the compressed data when |
| 687 | * compressing a buffer of size @size using the configured algorithm. |
| 688 | */ |
| 689 | static size_t |
| 690 | kcdata_compression_bound(kcdata_descriptor_t data, size_t size) |
| 691 | { |
| 692 | switch (data->kcd_comp_d.kcd_cd_compression_type) { |
| 693 | case KCDCT_ZLIB: |
| 694 | return kcdata_compression_bound_zlib(data, size); |
| 695 | case KCDCT_NONE: |
| 696 | return size; |
| 697 | default: |
| 698 | panic("%s: unknown compression method" , __func__); |
| 699 | } |
| 700 | } |
| 701 | |
| 702 | /* |
| 703 | * kcdata_compress_chunk_with_flags: |
| 704 | * Compress buffer found at @input_data (length @input_size) to the kcdata |
| 705 | * buffer described by @data. This method will construct the kcdata_item_t |
| 706 | * required by parsers using the type information @type and flags @flags. |
| 707 | * |
| 708 | * Returns KERN_SUCCESS when successful. Currently, asserts on failure. |
| 709 | */ |
| 710 | kern_return_t |
| 711 | kcdata_compress_chunk_with_flags(kcdata_descriptor_t data, uint32_t type, const void *input_data, uint32_t input_size, uint64_t kcdata_flags) |
| 712 | { |
| 713 | assert(data); |
| 714 | assert((data->kcd_flags & KCFLAG_USE_COMPRESSION)); |
| 715 | assert(input_data); |
| 716 | struct kcdata_item info; |
| 717 | char padding_data[16] = {0}; |
| 718 | struct kcdata_compress_descriptor *cd = &data->kcd_comp_d; |
| 719 | size_t wrote = 0; |
| 720 | kern_return_t kr; |
| 721 | |
| 722 | kcdata_debug_printf("%s: type: %d input_data: %p (%d) kcdata_flags: 0x%llx\n" , |
| 723 | __func__, type, input_data, input_size, kcdata_flags); |
| 724 | |
| 725 | /* |
| 726 | * first, get memory space. The uncompressed size must fit in the remained |
| 727 | * of the kcdata buffer, in case the compression algorithm doesn't actually |
| 728 | * compress the data at all. |
| 729 | */ |
| 730 | size_t total_uncompressed_size = kcdata_compression_bound(data, size: (size_t) kcdata_get_memory_size_for_data(size: input_size)); |
| 731 | if (total_uncompressed_size > data->kcd_length || |
| 732 | data->kcd_length - total_uncompressed_size < data->kcd_addr_end - data->kcd_addr_begin) { |
| 733 | kcdata_debug_printf("%s: insufficient buffer size: kcd_length => %d e-b=> %lld our size: %zu\n" , |
| 734 | __func__, data->kcd_length, data->kcd_addr_end - data->kcd_addr_begin, total_uncompressed_size); |
| 735 | return KERN_INSUFFICIENT_BUFFER_SIZE; |
| 736 | } |
| 737 | uint32_t padding = kcdata_calc_padding(size: input_size); |
| 738 | assert(padding < sizeof(padding_data)); |
| 739 | |
| 740 | void *space_start = (void *) data->kcd_addr_end; |
| 741 | void *space_ptr = space_start; |
| 742 | |
| 743 | /* create the output stream */ |
| 744 | size_t total_uncompressed_space_remaining = total_uncompressed_size; |
| 745 | |
| 746 | /* create the info data */ |
| 747 | bzero(s: &info, n: sizeof(info)); |
| 748 | info.type = type; |
| 749 | info.size = input_size + padding; |
| 750 | info.flags = kcdata_flags; |
| 751 | |
| 752 | /* |
| 753 | * The next possibly three compresses are needed separately because of the |
| 754 | * scatter-gather nature of this operation. The kcdata item header (info) |
| 755 | * and padding are on the stack, while the actual data is somewhere else. |
| 756 | * */ |
| 757 | |
| 758 | /* create the input stream for info & compress */ |
| 759 | enum kcdata_compression_flush flush = (padding || input_size) ? KCDCF_NO_FLUSH : |
| 760 | cd->kcd_cd_flags & KCD_CD_FLAG_FINALIZE ? KCDCF_FINISH : |
| 761 | KCDCF_SYNC_FLUSH; |
| 762 | kr = kcdata_do_compress(data, inbuffer: &info, insize: sizeof(info), outbuffer: space_ptr, outsize: total_uncompressed_space_remaining, wrote: &wrote, flush); |
| 763 | if (kr != KERN_SUCCESS) { |
| 764 | return kr; |
| 765 | } |
| 766 | kcdata_debug_printf("%s: first wrote = %zu\n" , __func__, wrote); |
| 767 | space_ptr = (void *)((uintptr_t)space_ptr + wrote); |
| 768 | total_uncompressed_space_remaining -= wrote; |
| 769 | |
| 770 | /* If there is input provided, compress that here */ |
| 771 | if (input_size) { |
| 772 | flush = padding ? KCDCF_NO_FLUSH : |
| 773 | cd->kcd_cd_flags & KCD_CD_FLAG_FINALIZE ? KCDCF_FINISH : |
| 774 | KCDCF_SYNC_FLUSH; |
| 775 | kr = kcdata_do_compress(data, inbuffer: (void *) (uintptr_t) input_data, insize: input_size, outbuffer: space_ptr, outsize: total_uncompressed_space_remaining, wrote: &wrote, flush); |
| 776 | if (kr != KERN_SUCCESS) { |
| 777 | return kr; |
| 778 | } |
| 779 | kcdata_debug_printf("%s: 2nd wrote = %zu\n" , __func__, wrote); |
| 780 | space_ptr = (void *)((uintptr_t)space_ptr + wrote); |
| 781 | total_uncompressed_space_remaining -= wrote; |
| 782 | } |
| 783 | |
| 784 | /* If the item and its data require padding to maintain alignment, |
| 785 | * "compress" that into the output buffer. */ |
| 786 | if (padding) { |
| 787 | /* write the padding */ |
| 788 | kr = kcdata_do_compress(data, inbuffer: padding_data, insize: padding, outbuffer: space_ptr, outsize: total_uncompressed_space_remaining, wrote: &wrote, |
| 789 | flush: cd->kcd_cd_flags & KCD_CD_FLAG_FINALIZE ? KCDCF_FINISH : KCDCF_SYNC_FLUSH); |
| 790 | if (kr != KERN_SUCCESS) { |
| 791 | return kr; |
| 792 | } |
| 793 | kcdata_debug_printf("%s: 3rd wrote = %zu\n" , __func__, wrote); |
| 794 | if (wrote == 0) { |
| 795 | return KERN_FAILURE; |
| 796 | } |
| 797 | space_ptr = (void *)((uintptr_t)space_ptr + wrote); |
| 798 | total_uncompressed_space_remaining -= wrote; |
| 799 | } |
| 800 | |
| 801 | assert((size_t)((uintptr_t)space_ptr - (uintptr_t)space_start) <= total_uncompressed_size); |
| 802 | |
| 803 | /* move the end marker forward */ |
| 804 | data->kcd_addr_end = (mach_vm_address_t) space_start + (total_uncompressed_size - total_uncompressed_space_remaining); |
| 805 | |
| 806 | return KERN_SUCCESS; |
| 807 | } |
| 808 | |
| 809 | /* |
| 810 | * kcdata_compress_chunk: |
| 811 | * Like kcdata_compress_chunk_with_flags(), but uses the default set of kcdata flags, |
| 812 | * i.e. padding and also saves the amount of padding bytes. |
| 813 | * |
| 814 | * Returns are the same as in kcdata_compress_chunk_with_flags() |
| 815 | */ |
| 816 | kern_return_t |
| 817 | kcdata_compress_chunk(kcdata_descriptor_t data, uint32_t type, const void *input_data, uint32_t input_size) |
| 818 | { |
| 819 | /* these flags are for kcdata - store that the struct is padded and store the amount of padding bytes */ |
| 820 | uint64_t flags = (KCDATA_FLAGS_STRUCT_PADDING_MASK & kcdata_calc_padding(size: input_size)) | KCDATA_FLAGS_STRUCT_HAS_PADDING; |
| 821 | return kcdata_compress_chunk_with_flags(data, type, input_data, input_size, kcdata_flags: flags); |
| 822 | } |
| 823 | |
| 824 | kern_return_t |
| 825 | kcdata_push_data(kcdata_descriptor_t data, uint32_t type, uint32_t size, const void *input_data) |
| 826 | { |
| 827 | if (data->kcd_flags & KCFLAG_USE_COMPRESSION) { |
| 828 | return kcdata_compress_chunk(data, type, input_data, input_size: size); |
| 829 | } else { |
| 830 | kern_return_t ret; |
| 831 | mach_vm_address_t uaddr = 0; |
| 832 | ret = kcdata_get_memory_addr(data, type, size, user_addr: &uaddr); |
| 833 | if (ret != KERN_SUCCESS) { |
| 834 | return ret; |
| 835 | } |
| 836 | |
| 837 | kcdata_memcpy(data, dst_addr: uaddr, src_addr: input_data, size); |
| 838 | return KERN_SUCCESS; |
| 839 | } |
| 840 | } |
| 841 | |
| 842 | kern_return_t |
| 843 | kcdata_push_array(kcdata_descriptor_t data, uint32_t type_of_element, uint32_t size_of_element, uint32_t count, const void *input_data) |
| 844 | { |
| 845 | uint64_t flags = type_of_element; |
| 846 | flags = (flags << 32) | count; |
| 847 | uint32_t total_size = count * size_of_element; |
| 848 | uint32_t pad = kcdata_calc_padding(size: total_size); |
| 849 | |
| 850 | if (data->kcd_flags & KCFLAG_USE_COMPRESSION) { |
| 851 | return kcdata_compress_chunk_with_flags(data, KCDATA_TYPE_ARRAY_PAD0 | pad, input_data, input_size: total_size, kcdata_flags: flags); |
| 852 | } else { |
| 853 | kern_return_t ret; |
| 854 | mach_vm_address_t uaddr = 0; |
| 855 | ret = kcdata_get_memory_addr_with_flavor(data, KCDATA_TYPE_ARRAY_PAD0 | pad, size: total_size, flags, user_addr: &uaddr); |
| 856 | if (ret != KERN_SUCCESS) { |
| 857 | return ret; |
| 858 | } |
| 859 | |
| 860 | kcdata_memcpy(data, dst_addr: uaddr, src_addr: input_data, size: total_size); |
| 861 | return KERN_SUCCESS; |
| 862 | } |
| 863 | } |
| 864 | |
| 865 | /* A few words on how window compression works: |
| 866 | * |
| 867 | * This is how the buffer looks when the window is opened: |
| 868 | * |
| 869 | * X---------------------------------------------------------------------X |
| 870 | * | | | |
| 871 | * | Filled with stackshot data | Zero bytes | |
| 872 | * | | | |
| 873 | * X---------------------------------------------------------------------X |
| 874 | * ^ |
| 875 | * \ - kcd_addr_end |
| 876 | * |
| 877 | * Opening a window will save the current kcd_addr_end to kcd_cd_mark_begin. |
| 878 | * |
| 879 | * Any kcdata_* operation will then push data to the buffer like normal. (If |
| 880 | * you call any compressing functions they will pass-through, i.e. no |
| 881 | * compression will be done) Once the window is closed, the following takes |
| 882 | * place: |
| 883 | * |
| 884 | * X---------------------------------------------------------------------X |
| 885 | * | | | | | |
| 886 | * | Existing data | New data | Scratch buffer | | |
| 887 | * | | | | | |
| 888 | * X---------------------------------------------------------------------X |
| 889 | * ^ ^ ^ |
| 890 | * | | | |
| 891 | * \ -kcd_cd_mark_begin | | |
| 892 | * | | |
| 893 | * \ - kcd_addr_end | |
| 894 | * | |
| 895 | * kcd_addr_end + (kcd_addr_end - kcd_cd_mark_begin) - / |
| 896 | * |
| 897 | * (1) The data between kcd_cd_mark_begin and kcd_addr_end is fed to the |
| 898 | * compression algorithm to compress to the scratch buffer. |
| 899 | * (2) The scratch buffer's contents are copied into the area denoted "New |
| 900 | * data" above. Effectively overwriting the uncompressed data with the |
| 901 | * compressed one. |
| 902 | * (3) kcd_addr_end is then rewound to kcd_cd_mark_begin + sizeof_compressed_data |
| 903 | */ |
| 904 | |
| 905 | /* Record the state, and restart compression from this later */ |
| 906 | void |
| 907 | kcdata_compression_window_open(kcdata_descriptor_t data) |
| 908 | { |
| 909 | struct kcdata_compress_descriptor *cd = &data->kcd_comp_d; |
| 910 | assert((cd->kcd_cd_flags & KCD_CD_FLAG_IN_MARK) == 0); |
| 911 | |
| 912 | if (data->kcd_flags & KCFLAG_USE_COMPRESSION) { |
| 913 | cd->kcd_cd_flags |= KCD_CD_FLAG_IN_MARK; |
| 914 | cd->kcd_cd_mark_begin = data->kcd_addr_end; |
| 915 | } |
| 916 | } |
| 917 | |
| 918 | /* Compress the region between the mark and the current end */ |
| 919 | kern_return_t |
| 920 | kcdata_compression_window_close(kcdata_descriptor_t data) |
| 921 | { |
| 922 | struct kcdata_compress_descriptor *cd = &data->kcd_comp_d; |
| 923 | uint64_t total_size, max_size; |
| 924 | void *space_start, *space_ptr; |
| 925 | size_t total_uncompressed_space_remaining, wrote = 0; |
| 926 | kern_return_t kr; |
| 927 | |
| 928 | if ((data->kcd_flags & KCFLAG_USE_COMPRESSION) == 0) { |
| 929 | return KERN_SUCCESS; |
| 930 | } |
| 931 | |
| 932 | assert(cd->kcd_cd_flags & KCD_CD_FLAG_IN_MARK); |
| 933 | |
| 934 | if (data->kcd_addr_end == (mach_vm_address_t) cd->kcd_cd_mark_begin) { |
| 935 | /* clear the window marker and return, this is a no-op */ |
| 936 | cd->kcd_cd_flags &= ~KCD_CD_FLAG_IN_MARK; |
| 937 | return KERN_SUCCESS; |
| 938 | } |
| 939 | |
| 940 | assert(cd->kcd_cd_mark_begin < data->kcd_addr_end); |
| 941 | total_size = data->kcd_addr_end - (uint64_t) cd->kcd_cd_mark_begin; |
| 942 | max_size = (uint64_t) kcdata_compression_bound(data, size: total_size); |
| 943 | kcdata_debug_printf("%s: total_size = %lld\n" , __func__, total_size); |
| 944 | |
| 945 | /* |
| 946 | * first, get memory space. The uncompressed size must fit in the remained |
| 947 | * of the kcdata buffer, in case the compression algorithm doesn't actually |
| 948 | * compress the data at all. |
| 949 | */ |
| 950 | if (max_size > data->kcd_length || |
| 951 | data->kcd_length - max_size < data->kcd_addr_end - data->kcd_addr_begin) { |
| 952 | kcdata_debug_printf("%s: insufficient buffer size: kcd_length => %d e-b=> %lld our size: %lld\n" , |
| 953 | __func__, data->kcd_length, data->kcd_addr_end - data->kcd_addr_begin, max_size); |
| 954 | return KERN_INSUFFICIENT_BUFFER_SIZE; |
| 955 | } |
| 956 | |
| 957 | /* clear the window marker */ |
| 958 | cd->kcd_cd_flags &= ~KCD_CD_FLAG_IN_MARK; |
| 959 | |
| 960 | space_start = (void *) data->kcd_addr_end; |
| 961 | space_ptr = space_start; |
| 962 | total_uncompressed_space_remaining = (unsigned int) max_size; |
| 963 | kr = kcdata_do_compress(data, inbuffer: (void *) cd->kcd_cd_mark_begin, insize: total_size, outbuffer: space_ptr, |
| 964 | outsize: total_uncompressed_space_remaining, wrote: &wrote, flush: KCDCF_SYNC_FLUSH); |
| 965 | if (kr != KERN_SUCCESS) { |
| 966 | return kr; |
| 967 | } |
| 968 | kcdata_debug_printf("%s: first wrote = %zu\n" , __func__, wrote); |
| 969 | if (wrote == 0) { |
| 970 | return KERN_FAILURE; |
| 971 | } |
| 972 | space_ptr = (void *)((uintptr_t)space_ptr + wrote); |
| 973 | total_uncompressed_space_remaining -= wrote; |
| 974 | |
| 975 | assert((size_t)((uintptr_t)space_ptr - (uintptr_t)space_start) <= max_size); |
| 976 | |
| 977 | /* copy to the original location */ |
| 978 | kcdata_memcpy(data, dst_addr: cd->kcd_cd_mark_begin, src_addr: space_start, size: (uint32_t) (max_size - total_uncompressed_space_remaining)); |
| 979 | |
| 980 | /* rewind the end marker */ |
| 981 | data->kcd_addr_end = cd->kcd_cd_mark_begin + (max_size - total_uncompressed_space_remaining); |
| 982 | |
| 983 | return KERN_SUCCESS; |
| 984 | } |
| 985 | |
| 986 | static kern_return_t |
| 987 | kcdata_get_compression_stats_zlib(kcdata_descriptor_t data, uint64_t *totalout, uint64_t *totalin) |
| 988 | { |
| 989 | struct kcdata_compress_descriptor *cd = &data->kcd_comp_d; |
| 990 | z_stream *zs = &cd->kcd_cd_zs; |
| 991 | |
| 992 | assert((cd->kcd_cd_flags & KCD_CD_FLAG_IN_MARK) == 0); |
| 993 | |
| 994 | *totalout = (uint64_t) zs->total_out; |
| 995 | *totalin = (uint64_t) zs->total_in; |
| 996 | |
| 997 | return KERN_SUCCESS; |
| 998 | } |
| 999 | |
| 1000 | static kern_return_t |
| 1001 | kcdata_get_compression_stats(kcdata_descriptor_t data, uint64_t *totalout, uint64_t *totalin) |
| 1002 | { |
| 1003 | kern_return_t kr; |
| 1004 | |
| 1005 | switch (data->kcd_comp_d.kcd_cd_compression_type) { |
| 1006 | case KCDCT_ZLIB: |
| 1007 | kr = kcdata_get_compression_stats_zlib(data, totalout, totalin); |
| 1008 | break; |
| 1009 | case KCDCT_NONE: |
| 1010 | *totalout = *totalin = kcdata_memory_get_used_bytes(kcd: data); |
| 1011 | kr = KERN_SUCCESS; |
| 1012 | break; |
| 1013 | default: |
| 1014 | panic("invalid compression flag 0x%llx in kcdata_write_compression_stats" , (data->kcd_comp_d.kcd_cd_compression_type)); |
| 1015 | } |
| 1016 | |
| 1017 | return kr; |
| 1018 | } |
| 1019 | |
| 1020 | kern_return_t |
| 1021 | kcdata_write_compression_stats(kcdata_descriptor_t data) |
| 1022 | { |
| 1023 | kern_return_t kr; |
| 1024 | uint64_t totalout, totalin; |
| 1025 | |
| 1026 | kr = kcdata_get_compression_stats(data, totalout: &totalout, totalin: &totalin); |
| 1027 | if (kr != KERN_SUCCESS) { |
| 1028 | return kr; |
| 1029 | } |
| 1030 | |
| 1031 | *(uint64_t *)data->kcd_comp_d.kcd_cd_totalout_addr = totalout; |
| 1032 | *(uint64_t *)data->kcd_comp_d.kcd_cd_totalin_addr = totalin; |
| 1033 | |
| 1034 | return kr; |
| 1035 | } |
| 1036 | |
| 1037 | static kern_return_t |
| 1038 | kcdata_finish_compression_zlib(kcdata_descriptor_t data) |
| 1039 | { |
| 1040 | struct kcdata_compress_descriptor *cd = &data->kcd_comp_d; |
| 1041 | z_stream *zs = &cd->kcd_cd_zs; |
| 1042 | |
| 1043 | /* |
| 1044 | * macOS on x86 w/ coprocessor ver. 2 and later context: Stackshot compression leaves artifacts |
| 1045 | * in the panic buffer which interferes with CRC checks. The CRC is calculated here over the full |
| 1046 | * buffer but only the portion with valid panic data is sent to iBoot via the SMC. When iBoot |
| 1047 | * calculates the CRC to compare with the value in the header it uses a zero-filled buffer. |
| 1048 | * The stackshot compression leaves non-zero bytes behind so those must be cleared prior to the CRC calculation. |
| 1049 | * This doesn't get the compression metadata; that's zeroed by kcdata_release_endallocs(). |
| 1050 | * |
| 1051 | * All other contexts: The stackshot compression artifacts are present in its panic buffer but the CRC check |
| 1052 | * is done on the same buffer for the before and after calculation so there's nothing functionally |
| 1053 | * broken. The same buffer cleanup is done here for completeness' sake. |
| 1054 | * From rdar://problem/64381661 |
| 1055 | */ |
| 1056 | |
| 1057 | void* stackshot_end = (char*)data->kcd_addr_begin + kcdata_memory_get_used_bytes(kcd: data); |
| 1058 | uint32_t zero_fill_size = data->kcd_length - kcdata_memory_get_used_bytes(kcd: data); |
| 1059 | bzero(s: stackshot_end, n: zero_fill_size); |
| 1060 | |
| 1061 | if (deflateEnd(strm: zs) == Z_OK) { |
| 1062 | return KERN_SUCCESS; |
| 1063 | } else { |
| 1064 | return KERN_FAILURE; |
| 1065 | } |
| 1066 | } |
| 1067 | |
| 1068 | static kern_return_t |
| 1069 | kcdata_finish_compression(kcdata_descriptor_t data) |
| 1070 | { |
| 1071 | kcdata_write_compression_stats(data); |
| 1072 | |
| 1073 | switch (data->kcd_comp_d.kcd_cd_compression_type) { |
| 1074 | case KCDCT_ZLIB: |
| 1075 | return kcdata_finish_compression_zlib(data); |
| 1076 | case KCDCT_NONE: |
| 1077 | return KERN_SUCCESS; |
| 1078 | default: |
| 1079 | panic("invalid compression type 0x%llxin kcdata_finish_compression" , data->kcd_comp_d.kcd_cd_compression_type); |
| 1080 | } |
| 1081 | } |
| 1082 | |
| 1083 | kern_return_t |
| 1084 | kcdata_finish(kcdata_descriptor_t data) |
| 1085 | { |
| 1086 | int ret = KERN_SUCCESS; |
| 1087 | if (data->kcd_flags & KCFLAG_USE_COMPRESSION) { |
| 1088 | ret = kcdata_finish_compression(data); |
| 1089 | } |
| 1090 | kcdata_release_endallocs(data); |
| 1091 | return ret; |
| 1092 | } |
| 1093 | |
| 1094 | void |
| 1095 | kcd_finalize_compression(kcdata_descriptor_t data) |
| 1096 | { |
| 1097 | if (data->kcd_flags & KCFLAG_USE_COMPRESSION) { |
| 1098 | data->kcd_comp_d.kcd_cd_flags |= KCD_CD_FLAG_FINALIZE; |
| 1099 | } |
| 1100 | } |
| 1101 | |
| 1102 | /* |
| 1103 | * Routine: kcdata_get_memory_addr |
| 1104 | * Desc: get memory address in the userspace memory for corpse info |
| 1105 | * NOTE: The caller is responsible for zeroing the resulting memory or |
| 1106 | * using other means to mark memory if it has failed populating the |
| 1107 | * data in middle of operation. |
| 1108 | * params: data - pointer describing the crash info allocation |
| 1109 | * type - type of data to be put. See corpse.h for defined types |
| 1110 | * size - size requested. The header describes this size |
| 1111 | * returns: mach_vm_address_t address in user memory for copyout(). |
| 1112 | */ |
| 1113 | kern_return_t |
| 1114 | kcdata_get_memory_addr(kcdata_descriptor_t data, uint32_t type, uint32_t size, mach_vm_address_t * user_addr) |
| 1115 | { |
| 1116 | /* record number of padding bytes as lower 4 bits of flags */ |
| 1117 | uint64_t flags = (KCDATA_FLAGS_STRUCT_PADDING_MASK & kcdata_calc_padding(size)) | KCDATA_FLAGS_STRUCT_HAS_PADDING; |
| 1118 | return kcdata_get_memory_addr_with_flavor(data, type, size, flags, user_addr); |
| 1119 | } |
| 1120 | |
| 1121 | /* |
| 1122 | * Routine: kcdata_add_buffer_end |
| 1123 | * |
| 1124 | * Desc: Write buffer end marker. This does not advance the end pointer in the |
| 1125 | * kcdata_descriptor_t, so it may be used conservatively before additional data |
| 1126 | * is added, as long as it is at least called after the last time data is added. |
| 1127 | * |
| 1128 | * params: data - pointer describing the crash info allocation |
| 1129 | */ |
| 1130 | |
| 1131 | kern_return_t |
| 1132 | kcdata_write_buffer_end(kcdata_descriptor_t data) |
| 1133 | { |
| 1134 | struct kcdata_item info; |
| 1135 | bzero(s: &info, n: sizeof(info)); |
| 1136 | info.type = KCDATA_TYPE_BUFFER_END; |
| 1137 | info.size = 0; |
| 1138 | return kcdata_memcpy(data, dst_addr: data->kcd_addr_end, src_addr: &info, size: sizeof(info)); |
| 1139 | } |
| 1140 | |
| 1141 | /* |
| 1142 | * Routine: kcdata_get_memory_addr_with_flavor |
| 1143 | * Desc: internal function with flags field. See documentation for kcdata_get_memory_addr for details |
| 1144 | */ |
| 1145 | |
| 1146 | static kern_return_t |
| 1147 | kcdata_get_memory_addr_with_flavor( |
| 1148 | kcdata_descriptor_t data, |
| 1149 | uint32_t type, |
| 1150 | uint32_t size, |
| 1151 | uint64_t flags, |
| 1152 | mach_vm_address_t *user_addr) |
| 1153 | { |
| 1154 | kern_return_t kr; |
| 1155 | struct kcdata_item info; |
| 1156 | |
| 1157 | uint32_t orig_size = size; |
| 1158 | /* make sure 16 byte aligned */ |
| 1159 | uint32_t padding = kcdata_calc_padding(size); |
| 1160 | size += padding; |
| 1161 | uint32_t total_size = size + sizeof(info); |
| 1162 | |
| 1163 | if (user_addr == NULL || data == NULL || total_size + sizeof(info) < orig_size) { |
| 1164 | return KERN_INVALID_ARGUMENT; |
| 1165 | } |
| 1166 | |
| 1167 | assert(((data->kcd_flags & KCFLAG_USE_COMPRESSION) && (data->kcd_comp_d.kcd_cd_flags & KCD_CD_FLAG_IN_MARK)) |
| 1168 | || ((data->kcd_flags & KCFLAG_USE_COMPRESSION) == 0)); |
| 1169 | |
| 1170 | bzero(s: &info, n: sizeof(info)); |
| 1171 | info.type = type; |
| 1172 | info.size = size; |
| 1173 | info.flags = flags; |
| 1174 | |
| 1175 | /* check available memory, including trailer size for KCDATA_TYPE_BUFFER_END */ |
| 1176 | if (total_size + sizeof(info) > data->kcd_length || |
| 1177 | data->kcd_length - (total_size + sizeof(info)) < data->kcd_addr_end - data->kcd_addr_begin) { |
| 1178 | return KERN_INSUFFICIENT_BUFFER_SIZE; |
| 1179 | } |
| 1180 | |
| 1181 | kr = kcdata_memcpy(data, dst_addr: data->kcd_addr_end, src_addr: &info, size: sizeof(info)); |
| 1182 | if (kr) { |
| 1183 | return kr; |
| 1184 | } |
| 1185 | |
| 1186 | data->kcd_addr_end += sizeof(info); |
| 1187 | |
| 1188 | if (padding) { |
| 1189 | kr = kcdata_bzero(data, dst_addr: data->kcd_addr_end + size - padding, size: padding); |
| 1190 | if (kr) { |
| 1191 | return kr; |
| 1192 | } |
| 1193 | } |
| 1194 | |
| 1195 | *user_addr = data->kcd_addr_end; |
| 1196 | data->kcd_addr_end += size; |
| 1197 | |
| 1198 | if (!(data->kcd_flags & KCFLAG_NO_AUTO_ENDBUFFER)) { |
| 1199 | /* setup the end header as well */ |
| 1200 | return kcdata_write_buffer_end(data); |
| 1201 | } else { |
| 1202 | return KERN_SUCCESS; |
| 1203 | } |
| 1204 | } |
| 1205 | |
| 1206 | /* Routine: kcdata_get_memory_size_for_data |
| 1207 | * Desc: returns the amount of memory that is required to store the information |
| 1208 | * in kcdata |
| 1209 | */ |
| 1210 | static size_t |
| 1211 | kcdata_get_memory_size_for_data(uint32_t size) |
| 1212 | { |
| 1213 | return size + kcdata_calc_padding(size) + sizeof(struct kcdata_item); |
| 1214 | } |
| 1215 | |
| 1216 | /* |
| 1217 | * Routine: kcdata_get_memory_addr_for_array |
| 1218 | * Desc: get memory address in the userspace memory for corpse info |
| 1219 | * NOTE: The caller is responsible to zero the resulting memory or |
| 1220 | * user other means to mark memory if it has failed populating the |
| 1221 | * data in middle of operation. |
| 1222 | * params: data - pointer describing the crash info allocation |
| 1223 | * type_of_element - type of data to be put. See kern_cdata.h for defined types |
| 1224 | * size_of_element - size of element. The header describes this size |
| 1225 | * count - num of elements in array. |
| 1226 | * returns: mach_vm_address_t address in user memory for copyout(). |
| 1227 | */ |
| 1228 | |
| 1229 | kern_return_t |
| 1230 | kcdata_get_memory_addr_for_array( |
| 1231 | kcdata_descriptor_t data, |
| 1232 | uint32_t type_of_element, |
| 1233 | uint32_t size_of_element, |
| 1234 | uint32_t count, |
| 1235 | mach_vm_address_t *user_addr) |
| 1236 | { |
| 1237 | /* for arrays we record the number of padding bytes as the low-order 4 bits |
| 1238 | * of the type field. KCDATA_TYPE_ARRAY_PAD{x} means x bytes of pad. */ |
| 1239 | uint64_t flags = type_of_element; |
| 1240 | flags = (flags << 32) | count; |
| 1241 | uint32_t total_size = count * size_of_element; |
| 1242 | uint32_t pad = kcdata_calc_padding(size: total_size); |
| 1243 | |
| 1244 | return kcdata_get_memory_addr_with_flavor(data, KCDATA_TYPE_ARRAY_PAD0 | pad, size: total_size, flags, user_addr); |
| 1245 | } |
| 1246 | |
| 1247 | /* |
| 1248 | * Routine: kcdata_add_container_marker |
| 1249 | * Desc: Add a container marker in the buffer for type and identifier. |
| 1250 | * params: data - pointer describing the crash info allocation |
| 1251 | * header_type - one of (KCDATA_TYPE_CONTAINER_BEGIN ,KCDATA_TYPE_CONTAINER_END) |
| 1252 | * container_type - type of data to be put. See kern_cdata.h for defined types |
| 1253 | * identifier - unique identifier. This is required to match nested containers. |
| 1254 | * returns: return value of kcdata_get_memory_addr() |
| 1255 | */ |
| 1256 | |
| 1257 | kern_return_t |
| 1258 | kcdata_add_container_marker( |
| 1259 | kcdata_descriptor_t data, |
| 1260 | uint32_t , |
| 1261 | uint32_t container_type, |
| 1262 | uint64_t identifier) |
| 1263 | { |
| 1264 | mach_vm_address_t user_addr; |
| 1265 | kern_return_t kr; |
| 1266 | uint32_t data_size; |
| 1267 | |
| 1268 | assert(header_type == KCDATA_TYPE_CONTAINER_END || header_type == KCDATA_TYPE_CONTAINER_BEGIN); |
| 1269 | |
| 1270 | data_size = (header_type == KCDATA_TYPE_CONTAINER_BEGIN)? sizeof(uint32_t): 0; |
| 1271 | |
| 1272 | if (!(data->kcd_flags & KCFLAG_USE_COMPRESSION)) { |
| 1273 | kr = kcdata_get_memory_addr_with_flavor(data, type: header_type, size: data_size, flags: identifier, user_addr: &user_addr); |
| 1274 | if (kr != KERN_SUCCESS) { |
| 1275 | return kr; |
| 1276 | } |
| 1277 | |
| 1278 | if (data_size) { |
| 1279 | kr = kcdata_memcpy(data, dst_addr: user_addr, src_addr: &container_type, size: data_size); |
| 1280 | } |
| 1281 | } else { |
| 1282 | kr = kcdata_compress_chunk_with_flags(data, type: header_type, input_data: &container_type, input_size: data_size, kcdata_flags: identifier); |
| 1283 | } |
| 1284 | |
| 1285 | return kr; |
| 1286 | } |
| 1287 | |
| 1288 | /* |
| 1289 | * Routine: kcdata_undo_addcontainer_begin |
| 1290 | * Desc: call this after adding a container begin but before adding anything else to revert. |
| 1291 | */ |
| 1292 | kern_return_t |
| 1293 | kcdata_undo_add_container_begin(kcdata_descriptor_t data) |
| 1294 | { |
| 1295 | /* |
| 1296 | * the payload of a container begin is a single uint64_t. It is padded out |
| 1297 | * to 16 bytes. |
| 1298 | */ |
| 1299 | const mach_vm_address_t padded_payload_size = 16; |
| 1300 | data->kcd_addr_end -= sizeof(struct kcdata_item) + padded_payload_size; |
| 1301 | |
| 1302 | if (!(data->kcd_flags & KCFLAG_NO_AUTO_ENDBUFFER)) { |
| 1303 | /* setup the end header as well */ |
| 1304 | return kcdata_write_buffer_end(data); |
| 1305 | } else { |
| 1306 | return KERN_SUCCESS; |
| 1307 | } |
| 1308 | } |
| 1309 | |
| 1310 | /* |
| 1311 | * Routine: kcdata_memcpy |
| 1312 | * Desc: a common function to copy data out based on either copyout or memcopy flags |
| 1313 | * params: data - pointer describing the kcdata buffer |
| 1314 | * dst_addr - destination address |
| 1315 | * src_addr - source address |
| 1316 | * size - size in bytes to copy. |
| 1317 | * returns: KERN_NO_ACCESS if copyout fails. |
| 1318 | */ |
| 1319 | |
| 1320 | kern_return_t |
| 1321 | kcdata_memcpy(kcdata_descriptor_t data, mach_vm_address_t dst_addr, const void *src_addr, uint32_t size) |
| 1322 | { |
| 1323 | if (data->kcd_flags & KCFLAG_USE_COPYOUT) { |
| 1324 | if (copyout(src_addr, dst_addr, size)) { |
| 1325 | return KERN_NO_ACCESS; |
| 1326 | } |
| 1327 | } else { |
| 1328 | memcpy(dst: (void *)dst_addr, src: src_addr, n: size); |
| 1329 | } |
| 1330 | return KERN_SUCCESS; |
| 1331 | } |
| 1332 | |
| 1333 | /* |
| 1334 | * Routine: kcdata_bzero |
| 1335 | * Desc: zero out a portion of a kcdata buffer. |
| 1336 | */ |
| 1337 | kern_return_t |
| 1338 | kcdata_bzero(kcdata_descriptor_t data, mach_vm_address_t dst_addr, uint32_t size) |
| 1339 | { |
| 1340 | kern_return_t kr = KERN_SUCCESS; |
| 1341 | if (data->kcd_flags & KCFLAG_USE_COPYOUT) { |
| 1342 | uint8_t zeros[16] = {}; |
| 1343 | while (size) { |
| 1344 | uint32_t block_size = MIN(size, 16); |
| 1345 | kr = copyout(&zeros, dst_addr, block_size); |
| 1346 | if (kr) { |
| 1347 | return KERN_NO_ACCESS; |
| 1348 | } |
| 1349 | size -= block_size; |
| 1350 | } |
| 1351 | return KERN_SUCCESS; |
| 1352 | } else { |
| 1353 | bzero(s: (void*)dst_addr, n: size); |
| 1354 | return KERN_SUCCESS; |
| 1355 | } |
| 1356 | } |
| 1357 | |
| 1358 | /* |
| 1359 | * Routine: kcdata_add_type_definition |
| 1360 | * Desc: add type definition to kcdata buffer. |
| 1361 | * see feature description in documentation above. |
| 1362 | * params: data - pointer describing the kcdata buffer |
| 1363 | * type_id - unique type identifier for this data |
| 1364 | * type_name - a string of max KCDATA_DESC_MAXLEN size for name of type |
| 1365 | * elements_array - address to descriptors for each field in struct |
| 1366 | * elements_count - count of how many fields are there in struct. |
| 1367 | * returns: return code from kcdata_get_memory_addr in case of failure. |
| 1368 | */ |
| 1369 | |
| 1370 | kern_return_t |
| 1371 | kcdata_add_type_definition( |
| 1372 | kcdata_descriptor_t data, |
| 1373 | uint32_t type_id, |
| 1374 | char *type_name, |
| 1375 | struct kcdata_subtype_descriptor *elements_array_addr, |
| 1376 | uint32_t elements_count) |
| 1377 | { |
| 1378 | kern_return_t kr = KERN_SUCCESS; |
| 1379 | struct kcdata_type_definition kc_type_definition; |
| 1380 | mach_vm_address_t user_addr; |
| 1381 | uint32_t total_size = sizeof(struct kcdata_type_definition); |
| 1382 | bzero(s: &kc_type_definition, n: sizeof(kc_type_definition)); |
| 1383 | |
| 1384 | if (strlen(s: type_name) >= KCDATA_DESC_MAXLEN) { |
| 1385 | return KERN_INVALID_ARGUMENT; |
| 1386 | } |
| 1387 | strlcpy(dst: &kc_type_definition.kct_name[0], src: type_name, KCDATA_DESC_MAXLEN); |
| 1388 | kc_type_definition.kct_num_elements = elements_count; |
| 1389 | kc_type_definition.kct_type_identifier = type_id; |
| 1390 | |
| 1391 | total_size += elements_count * sizeof(struct kcdata_subtype_descriptor); |
| 1392 | /* record number of padding bytes as lower 4 bits of flags */ |
| 1393 | if (KERN_SUCCESS != (kr = kcdata_get_memory_addr_with_flavor(data, KCDATA_TYPE_TYPEDEFINTION, size: total_size, |
| 1394 | flags: kcdata_calc_padding(size: total_size), user_addr: &user_addr))) { |
| 1395 | return kr; |
| 1396 | } |
| 1397 | if (KERN_SUCCESS != (kr = kcdata_memcpy(data, dst_addr: user_addr, src_addr: (void *)&kc_type_definition, size: sizeof(struct kcdata_type_definition)))) { |
| 1398 | return kr; |
| 1399 | } |
| 1400 | user_addr += sizeof(struct kcdata_type_definition); |
| 1401 | if (KERN_SUCCESS != (kr = kcdata_memcpy(data, dst_addr: user_addr, src_addr: (void *)elements_array_addr, size: elements_count * sizeof(struct kcdata_subtype_descriptor)))) { |
| 1402 | return kr; |
| 1403 | } |
| 1404 | return kr; |
| 1405 | } |
| 1406 | |
| 1407 | kern_return_t |
| 1408 | kcdata_add_uint64_with_description(kcdata_descriptor_t data_desc, uint64_t data, const char * description) |
| 1409 | { |
| 1410 | if (strlen(s: description) >= KCDATA_DESC_MAXLEN) { |
| 1411 | return KERN_INVALID_ARGUMENT; |
| 1412 | } |
| 1413 | |
| 1414 | kern_return_t kr = 0; |
| 1415 | mach_vm_address_t user_addr; |
| 1416 | struct _uint64_with_description_data save_data; |
| 1417 | const uint64_t size_req = sizeof(save_data); |
| 1418 | bzero(s: &save_data, n: size_req); |
| 1419 | |
| 1420 | strlcpy(dst: &(save_data.desc[0]), src: description, n: sizeof(save_data.desc)); |
| 1421 | save_data.data = data; |
| 1422 | |
| 1423 | if (data_desc->kcd_flags & KCFLAG_USE_COMPRESSION) { |
| 1424 | /* allocate space for the output */ |
| 1425 | return kcdata_compress_chunk(data: data_desc, KCDATA_TYPE_UINT64_DESC, input_data: &save_data, input_size: size_req); |
| 1426 | } |
| 1427 | |
| 1428 | kr = kcdata_get_memory_addr(data: data_desc, KCDATA_TYPE_UINT64_DESC, size: size_req, user_addr: &user_addr); |
| 1429 | if (kr != KERN_SUCCESS) { |
| 1430 | return kr; |
| 1431 | } |
| 1432 | |
| 1433 | if (data_desc->kcd_flags & KCFLAG_USE_COPYOUT) { |
| 1434 | if (copyout(&save_data, user_addr, size_req)) { |
| 1435 | return KERN_NO_ACCESS; |
| 1436 | } |
| 1437 | } else { |
| 1438 | memcpy(dst: (void *)user_addr, src: &save_data, n: size_req); |
| 1439 | } |
| 1440 | return KERN_SUCCESS; |
| 1441 | } |
| 1442 | |
| 1443 | kern_return_t |
| 1444 | kcdata_add_uint32_with_description( |
| 1445 | kcdata_descriptor_t data_desc, |
| 1446 | uint32_t data, |
| 1447 | const char *description) |
| 1448 | { |
| 1449 | assert(strlen(description) < KCDATA_DESC_MAXLEN); |
| 1450 | if (strlen(s: description) >= KCDATA_DESC_MAXLEN) { |
| 1451 | return KERN_INVALID_ARGUMENT; |
| 1452 | } |
| 1453 | kern_return_t kr = 0; |
| 1454 | mach_vm_address_t user_addr; |
| 1455 | struct _uint32_with_description_data save_data; |
| 1456 | const uint64_t size_req = sizeof(save_data); |
| 1457 | |
| 1458 | bzero(s: &save_data, n: size_req); |
| 1459 | strlcpy(dst: &(save_data.desc[0]), src: description, n: sizeof(save_data.desc)); |
| 1460 | save_data.data = data; |
| 1461 | |
| 1462 | if (data_desc->kcd_flags & KCFLAG_USE_COMPRESSION) { |
| 1463 | /* allocate space for the output */ |
| 1464 | return kcdata_compress_chunk(data: data_desc, KCDATA_TYPE_UINT32_DESC, input_data: &save_data, input_size: size_req); |
| 1465 | } |
| 1466 | |
| 1467 | kr = kcdata_get_memory_addr(data: data_desc, KCDATA_TYPE_UINT32_DESC, size: size_req, user_addr: &user_addr); |
| 1468 | if (kr != KERN_SUCCESS) { |
| 1469 | return kr; |
| 1470 | } |
| 1471 | |
| 1472 | if (data_desc->kcd_flags & KCFLAG_USE_COPYOUT) { |
| 1473 | if (copyout(&save_data, user_addr, size_req)) { |
| 1474 | return KERN_NO_ACCESS; |
| 1475 | } |
| 1476 | } else { |
| 1477 | memcpy(dst: (void *)user_addr, src: &save_data, n: size_req); |
| 1478 | } |
| 1479 | |
| 1480 | return KERN_SUCCESS; |
| 1481 | } |
| 1482 | |
| 1483 | |
| 1484 | /* end buffer management api */ |
| 1485 | |