| 1 | /* |
| 2 | * Copyright (c) 1999, 2003, 2006, 2007, 2010 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. Please obtain a copy of the License at |
| 10 | * http://www.opensource.apple.com/apsl/ and read it before using this |
| 11 | * file. |
| 12 | * |
| 13 | * The Original Code and all software distributed under the License are |
| 14 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 15 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 16 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 17 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 18 | * Please see the License for the specific language governing rights and |
| 19 | * limitations under the License. |
| 20 | * |
| 21 | * @APPLE_LICENSE_HEADER_END@ |
| 22 | */ |
| 23 | /* |
| 24 | * Code duplicated from Libc/gen/nanosleep.c |
| 25 | */ |
| 26 | |
| 27 | #ifndef _ARITHMETIC_128_H_ |
| 28 | #define _ARITHMETIC_128_H_ |
| 29 | |
| 30 | #include <stdint.h> |
| 31 | |
| 32 | #if __LP64__ |
| 33 | |
| 34 | static __inline uint64_t |
| 35 | multi_overflow(uint64_t a, uint64_t b) |
| 36 | { |
| 37 | __uint128_t prod; |
| 38 | prod = (__uint128_t)a * (__uint128_t)b; |
| 39 | return (uint64_t) (prod >> 64); |
| 40 | } |
| 41 | |
| 42 | #else |
| 43 | |
| 44 | typedef struct { |
| 45 | uint64_t high; |
| 46 | uint64_t low; |
| 47 | } uint128_data_t; |
| 48 | |
| 49 | /* 128-bit addition: acc += add */ |
| 50 | static __inline void |
| 51 | add128_128(uint128_data_t *acc, uint128_data_t *add) |
| 52 | { |
| 53 | acc->high += add->high; |
| 54 | acc->low += add->low; |
| 55 | if (acc->low < add->low) { |
| 56 | acc->high++; // carry |
| 57 | } |
| 58 | } |
| 59 | |
| 60 | /* 64x64 -> 128 bit multiplication */ |
| 61 | static __inline void |
| 62 | mul64x64(uint64_t x, uint64_t y, uint128_data_t *prod) |
| 63 | { |
| 64 | uint128_data_t add; |
| 65 | /* |
| 66 | * Split the two 64-bit multiplicands into 32-bit parts: |
| 67 | * x => 2^32 * x1 + x2 |
| 68 | * y => 2^32 * y1 + y2 |
| 69 | */ |
| 70 | uint32_t x1 = (uint32_t)(x >> 32); |
| 71 | uint32_t x2 = (uint32_t)x; |
| 72 | uint32_t y1 = (uint32_t)(y >> 32); |
| 73 | uint32_t y2 = (uint32_t)y; |
| 74 | /* |
| 75 | * direct multiplication: |
| 76 | * x * y => 2^64 * (x1 * y1) + 2^32 (x1 * y2 + x2 * y1) + (x2 * y2) |
| 77 | * The first and last terms are direct assignmenet into the uint128_t |
| 78 | * structure. Then we add the middle two terms separately, to avoid |
| 79 | * 64-bit overflow. (We could use the Karatsuba algorithm to save |
| 80 | * one multiply, but it is harder to deal with 64-bit overflows.) |
| 81 | */ |
| 82 | prod->high = (uint64_t)x1 * (uint64_t)y1; |
| 83 | prod->low = (uint64_t)x2 * (uint64_t)y2; |
| 84 | add.low = (uint64_t)x1 * (uint64_t)y2; |
| 85 | add.high = (add.low >> 32); |
| 86 | add.low <<= 32; |
| 87 | add128_128(prod, &add); |
| 88 | add.low = (uint64_t)x2 * (uint64_t)y1; |
| 89 | add.high = (add.low >> 32); |
| 90 | add.low <<= 32; |
| 91 | add128_128(prod, &add); |
| 92 | } |
| 93 | |
| 94 | static __inline uint64_t |
| 95 | multi_overflow(uint64_t a, uint64_t b) |
| 96 | { |
| 97 | uint128_data_t prod; |
| 98 | mul64x64(a, b, &prod); |
| 99 | return prod.high; |
| 100 | } |
| 101 | |
| 102 | #endif /* __LP64__ */ |
| 103 | #endif /* _ARITHMETIC_128_H_ */ |
| 104 | |