| 1 | /* |
| 2 | * Copyright (c) 2000-2023 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | /* $FreeBSD: src/sys/netinet6/frag6.c,v 1.2.2.5 2001/07/03 11:01:50 ume Exp $ */ |
| 30 | /* $KAME: frag6.c,v 1.31 2001/05/17 13:45:34 jinmei Exp $ */ |
| 31 | |
| 32 | /* |
| 33 | * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. |
| 34 | * All rights reserved. |
| 35 | * |
| 36 | * Redistribution and use in source and binary forms, with or without |
| 37 | * modification, are permitted provided that the following conditions |
| 38 | * are met: |
| 39 | * 1. Redistributions of source code must retain the above copyright |
| 40 | * notice, this list of conditions and the following disclaimer. |
| 41 | * 2. Redistributions in binary form must reproduce the above copyright |
| 42 | * notice, this list of conditions and the following disclaimer in the |
| 43 | * documentation and/or other materials provided with the distribution. |
| 44 | * 3. Neither the name of the project nor the names of its contributors |
| 45 | * may be used to endorse or promote products derived from this software |
| 46 | * without specific prior written permission. |
| 47 | * |
| 48 | * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND |
| 49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE |
| 52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 58 | * SUCH DAMAGE. |
| 59 | */ |
| 60 | |
| 61 | #include <sys/param.h> |
| 62 | #include <sys/systm.h> |
| 63 | #include <sys/malloc.h> |
| 64 | #include <sys/mcache.h> |
| 65 | #include <sys/mbuf.h> |
| 66 | #include <sys/domain.h> |
| 67 | #include <sys/protosw.h> |
| 68 | #include <sys/socket.h> |
| 69 | #include <sys/errno.h> |
| 70 | #include <sys/time.h> |
| 71 | #include <sys/kernel.h> |
| 72 | #include <sys/syslog.h> |
| 73 | #include <kern/queue.h> |
| 74 | #include <kern/locks.h> |
| 75 | |
| 76 | #include <net/if.h> |
| 77 | #include <net/route.h> |
| 78 | |
| 79 | #include <netinet/in.h> |
| 80 | #include <netinet/in_var.h> |
| 81 | #include <netinet/ip.h> |
| 82 | #include <netinet/ip_var.h> |
| 83 | #include <netinet/ip6.h> |
| 84 | #include <netinet6/ip6_var.h> |
| 85 | #include <netinet/icmp6.h> |
| 86 | |
| 87 | #include <net/net_osdep.h> |
| 88 | #include <dev/random/randomdev.h> |
| 89 | |
| 90 | /* |
| 91 | * Define it to get a correct behavior on per-interface statistics. |
| 92 | */ |
| 93 | #define IN6_IFSTAT_STRICT |
| 94 | struct ip6asfrag { |
| 95 | struct ip6asfrag *ip6af_down; |
| 96 | struct ip6asfrag *ip6af_up; |
| 97 | struct mbuf *ip6af_m; |
| 98 | int ip6af_offset; /* offset in ip6af_m to next header */ |
| 99 | int ip6af_frglen; /* fragmentable part length */ |
| 100 | int ip6af_off; /* fragment offset */ |
| 101 | u_int16_t ip6af_mff; /* more fragment bit in frag off */ |
| 102 | }; |
| 103 | |
| 104 | #define IP6_REASS_MBUF(ip6af) ((ip6af)->ip6af_m) |
| 105 | |
| 106 | MBUFQ_HEAD(fq6_head); |
| 107 | |
| 108 | static void frag6_save_context(struct mbuf *, int); |
| 109 | static void frag6_scrub_context(struct mbuf *); |
| 110 | static int frag6_restore_context(struct mbuf *); |
| 111 | |
| 112 | static void frag6_icmp6_paramprob_error(struct fq6_head *); |
| 113 | static void frag6_icmp6_timeex_error(struct fq6_head *); |
| 114 | |
| 115 | static void frag6_enq(struct ip6asfrag *, struct ip6asfrag *); |
| 116 | static void frag6_deq(struct ip6asfrag *); |
| 117 | static void frag6_insque(struct ip6q *, struct ip6q *); |
| 118 | static void frag6_remque(struct ip6q *); |
| 119 | static void frag6_purgef(struct ip6q *, struct fq6_head *, struct fq6_head *); |
| 120 | static void frag6_freef(struct ip6q *, struct fq6_head *, struct fq6_head *); |
| 121 | |
| 122 | static int frag6_timeout_run; /* frag6 timer is scheduled to run */ |
| 123 | static void frag6_timeout(void *); |
| 124 | static void frag6_sched_timeout(void); |
| 125 | |
| 126 | static struct ip6q *ip6q_alloc(void); |
| 127 | static void ip6q_free(struct ip6q *); |
| 128 | static void ip6q_updateparams(void); |
| 129 | static struct ip6asfrag *ip6af_alloc(void); |
| 130 | static void ip6af_free(struct ip6asfrag *); |
| 131 | |
| 132 | static LCK_GRP_DECLARE(ip6qlock_grp, "ip6qlock" ); |
| 133 | static LCK_MTX_DECLARE(ip6qlock, &ip6qlock_grp); |
| 134 | |
| 135 | /* IPv6 fragment reassembly queues (protected by ip6qlock) */ |
| 136 | static struct ip6q ip6q; /* ip6 reassembly queues */ |
| 137 | static int ip6_maxfragpackets; /* max packets in reass queues */ |
| 138 | static u_int32_t frag6_nfragpackets; /* # of packets in reass queues */ |
| 139 | static int ip6_maxfrags; /* max fragments in reass queues */ |
| 140 | static u_int32_t frag6_nfrags; /* # of fragments in reass queues */ |
| 141 | static u_int32_t ip6q_limit; /* ip6q allocation limit */ |
| 142 | static u_int32_t ip6q_count; /* current # of allocated ip6q's */ |
| 143 | static u_int32_t ip6af_limit; /* ip6asfrag allocation limit */ |
| 144 | static u_int32_t ip6af_count; /* current # of allocated ip6asfrag's */ |
| 145 | |
| 146 | static int sysctl_maxfragpackets SYSCTL_HANDLER_ARGS; |
| 147 | static int sysctl_maxfrags SYSCTL_HANDLER_ARGS; |
| 148 | |
| 149 | SYSCTL_DECL(_net_inet6_ip6); |
| 150 | |
| 151 | SYSCTL_PROC(_net_inet6_ip6, IPV6CTL_MAXFRAGPACKETS, maxfragpackets, |
| 152 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_maxfragpackets, 0, |
| 153 | sysctl_maxfragpackets, "I" , |
| 154 | "Maximum number of IPv6 fragment reassembly queue entries" ); |
| 155 | |
| 156 | SYSCTL_UINT(_net_inet6_ip6, OID_AUTO, fragpackets, |
| 157 | CTLFLAG_RD | CTLFLAG_LOCKED, &frag6_nfragpackets, 0, |
| 158 | "Current number of IPv6 fragment reassembly queue entries" ); |
| 159 | |
| 160 | SYSCTL_PROC(_net_inet6_ip6, IPV6CTL_MAXFRAGS, maxfrags, |
| 161 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_maxfrags, 0, |
| 162 | sysctl_maxfrags, "I" , "Maximum number of IPv6 fragments allowed" ); |
| 163 | |
| 164 | /* |
| 165 | * Initialise reassembly queue and fragment identifier. |
| 166 | */ |
| 167 | void |
| 168 | frag6_init(void) |
| 169 | { |
| 170 | lck_mtx_lock(lck: &ip6qlock); |
| 171 | /* Initialize IPv6 reassembly queue. */ |
| 172 | ip6q.ip6q_next = ip6q.ip6q_prev = &ip6q; |
| 173 | |
| 174 | /* same limits as IPv4 */ |
| 175 | ip6_maxfragpackets = nmbclusters / 32; |
| 176 | ip6_maxfrags = ip6_maxfragpackets * 2; |
| 177 | ip6q_updateparams(); |
| 178 | lck_mtx_unlock(lck: &ip6qlock); |
| 179 | } |
| 180 | |
| 181 | static void |
| 182 | frag6_save_context(struct mbuf *m, int val) |
| 183 | { |
| 184 | m->m_pkthdr.pkt_hdr = (void *)(uintptr_t)val; |
| 185 | } |
| 186 | |
| 187 | static void |
| 188 | frag6_scrub_context(struct mbuf *m) |
| 189 | { |
| 190 | m->m_pkthdr.pkt_hdr = NULL; |
| 191 | } |
| 192 | |
| 193 | static int |
| 194 | frag6_restore_context(struct mbuf *m) |
| 195 | { |
| 196 | return (int)m->m_pkthdr.pkt_hdr; |
| 197 | } |
| 198 | |
| 199 | /* |
| 200 | * Send any deferred ICMP param problem error messages; caller must not be |
| 201 | * holding ip6qlock and is expected to have saved the per-packet parameter |
| 202 | * value via frag6_save_context(). |
| 203 | */ |
| 204 | static void |
| 205 | frag6_icmp6_paramprob_error(struct fq6_head *diq6) |
| 206 | { |
| 207 | LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_NOTOWNED); |
| 208 | |
| 209 | if (!MBUFQ_EMPTY(diq6)) { |
| 210 | struct mbuf *merr, *merr_tmp; |
| 211 | int param; |
| 212 | MBUFQ_FOREACH_SAFE(merr, diq6, merr_tmp) { |
| 213 | MBUFQ_REMOVE(diq6, merr); |
| 214 | MBUFQ_NEXT(merr) = NULL; |
| 215 | param = frag6_restore_context(m: merr); |
| 216 | frag6_scrub_context(m: merr); |
| 217 | icmp6_error(merr, ICMP6_PARAM_PROB, |
| 218 | ICMP6_PARAMPROB_HEADER, param); |
| 219 | } |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | /* |
| 224 | * Send any deferred ICMP time exceeded error messages; |
| 225 | * caller must not be holding ip6qlock. |
| 226 | */ |
| 227 | static void |
| 228 | frag6_icmp6_timeex_error(struct fq6_head *diq6) |
| 229 | { |
| 230 | LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_NOTOWNED); |
| 231 | |
| 232 | if (!MBUFQ_EMPTY(diq6)) { |
| 233 | struct mbuf *m, *m_tmp; |
| 234 | MBUFQ_FOREACH_SAFE(m, diq6, m_tmp) { |
| 235 | MBUFQ_REMOVE(diq6, m); |
| 236 | MBUFQ_NEXT(m) = NULL; |
| 237 | icmp6_error_flag(m, ICMP6_TIME_EXCEEDED, |
| 238 | ICMP6_TIME_EXCEED_REASSEMBLY, 0, 0); |
| 239 | } |
| 240 | } |
| 241 | } |
| 242 | |
| 243 | /* |
| 244 | * In RFC2460, fragment and reassembly rule do not agree with each other, |
| 245 | * in terms of next header field handling in fragment header. |
| 246 | * While the sender will use the same value for all of the fragmented packets, |
| 247 | * receiver is suggested not to check the consistency. |
| 248 | * |
| 249 | * fragment rule (p20): |
| 250 | * (2) A Fragment header containing: |
| 251 | * The Next Header value that identifies the first header of |
| 252 | * the Fragmentable Part of the original packet. |
| 253 | * -> next header field is same for all fragments |
| 254 | * |
| 255 | * reassembly rule (p21): |
| 256 | * The Next Header field of the last header of the Unfragmentable |
| 257 | * Part is obtained from the Next Header field of the first |
| 258 | * fragment's Fragment header. |
| 259 | * -> should grab it from the first fragment only |
| 260 | * |
| 261 | * The following note also contradicts with fragment rule - noone is going to |
| 262 | * send different fragment with different next header field. |
| 263 | * |
| 264 | * additional note (p22): |
| 265 | * The Next Header values in the Fragment headers of different |
| 266 | * fragments of the same original packet may differ. Only the value |
| 267 | * from the Offset zero fragment packet is used for reassembly. |
| 268 | * -> should grab it from the first fragment only |
| 269 | * |
| 270 | * There is no explicit reason given in the RFC. Historical reason maybe? |
| 271 | */ |
| 272 | /* |
| 273 | * Fragment input |
| 274 | */ |
| 275 | int |
| 276 | frag6_input(struct mbuf **mp, int *offp, int proto) |
| 277 | { |
| 278 | #pragma unused(proto) |
| 279 | struct mbuf *m = *mp, *t = NULL; |
| 280 | struct ip6_hdr *ip6 = NULL; |
| 281 | struct ip6_frag *ip6f = NULL; |
| 282 | struct ip6q *q6 = NULL; |
| 283 | struct ip6asfrag *af6 = NULL, *ip6af = NULL, *af6dwn = NULL; |
| 284 | int offset = *offp, i = 0, next = 0; |
| 285 | u_int8_t nxt = 0; |
| 286 | int first_frag = 0; |
| 287 | int fragoff = 0, frgpartlen = 0; /* must be larger than u_int16_t */ |
| 288 | struct ifnet *dstifp = NULL; |
| 289 | u_int8_t ecn = 0, ecn0 = 0; |
| 290 | uint32_t csum = 0, csum_flags = 0; |
| 291 | struct fq6_head diq6 = {}; |
| 292 | int locked = 0; |
| 293 | boolean_t drop_fragq = FALSE; |
| 294 | int local_ip6q_unfrglen; |
| 295 | u_int8_t local_ip6q_nxt; |
| 296 | |
| 297 | VERIFY(m->m_flags & M_PKTHDR); |
| 298 | |
| 299 | MBUFQ_INIT(&diq6); /* for deferred ICMP param problem errors */ |
| 300 | |
| 301 | /* Expect 32-bit aligned data pointer on strict-align platforms */ |
| 302 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); |
| 303 | |
| 304 | IP6_EXTHDR_CHECK(m, offset, sizeof(struct ip6_frag), goto done); |
| 305 | ip6 = mtod(m, struct ip6_hdr *); |
| 306 | ip6f = (struct ip6_frag *)((caddr_t)ip6 + offset); |
| 307 | |
| 308 | #ifdef IN6_IFSTAT_STRICT |
| 309 | /* find the destination interface of the packet. */ |
| 310 | if (m->m_pkthdr.pkt_flags & PKTF_IFAINFO) { |
| 311 | uint32_t idx; |
| 312 | |
| 313 | if (ip6_getdstifaddr_info(m, &idx, NULL) == 0) { |
| 314 | if (idx > 0 && idx <= if_index) { |
| 315 | ifnet_head_lock_shared(); |
| 316 | dstifp = ifindex2ifnet[idx]; |
| 317 | ifnet_head_done(); |
| 318 | } |
| 319 | } |
| 320 | } |
| 321 | #endif /* IN6_IFSTAT_STRICT */ |
| 322 | |
| 323 | /* we are violating the spec, this may not be the dst interface */ |
| 324 | if (dstifp == NULL) { |
| 325 | dstifp = m->m_pkthdr.rcvif; |
| 326 | } |
| 327 | |
| 328 | /* jumbo payload can't contain a fragment header */ |
| 329 | if (ip6->ip6_plen == 0) { |
| 330 | icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset); |
| 331 | in6_ifstat_inc(dstifp, ifs6_reass_fail); |
| 332 | m = NULL; |
| 333 | goto done; |
| 334 | } |
| 335 | |
| 336 | /* |
| 337 | * check whether fragment packet's fragment length is |
| 338 | * multiple of 8 octets. |
| 339 | * sizeof(struct ip6_frag) == 8 |
| 340 | * sizeof(struct ip6_hdr) = 40 |
| 341 | */ |
| 342 | if ((ip6f->ip6f_offlg & IP6F_MORE_FRAG) && |
| 343 | (((ntohs(ip6->ip6_plen) - offset) & 0x7) != 0)) { |
| 344 | icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, |
| 345 | offsetof(struct ip6_hdr, ip6_plen)); |
| 346 | in6_ifstat_inc(dstifp, ifs6_reass_fail); |
| 347 | m = NULL; |
| 348 | goto done; |
| 349 | } |
| 350 | |
| 351 | /* If ip6_maxfragpackets or ip6_maxfrags is 0, never accept fragments */ |
| 352 | if (ip6_maxfragpackets == 0 || ip6_maxfrags == 0) { |
| 353 | ip6stat.ip6s_fragments++; |
| 354 | ip6stat.ip6s_fragdropped++; |
| 355 | in6_ifstat_inc(dstifp, ifs6_reass_fail); |
| 356 | m_freem(m); |
| 357 | m = NULL; |
| 358 | goto done; |
| 359 | } |
| 360 | |
| 361 | /* offset now points to data portion */ |
| 362 | offset += sizeof(struct ip6_frag); |
| 363 | |
| 364 | /* |
| 365 | * RFC 6946: Handle "atomic" fragments (offset and m bit set to 0) |
| 366 | * upfront, unrelated to any reassembly. Just skip the fragment header. |
| 367 | */ |
| 368 | if ((ip6f->ip6f_offlg & ~IP6F_RESERVED_MASK) == 0) { |
| 369 | /* |
| 370 | * Mark packet as reassembled. |
| 371 | * In ICMPv6 processing, we drop certain |
| 372 | * NDP messages that are not expected to |
| 373 | * have fragment header based on recommendations |
| 374 | * against security vulnerability as described in |
| 375 | * RFC 6980. |
| 376 | * Treat atomic fragments as re-assembled packets as well. |
| 377 | */ |
| 378 | m->m_pkthdr.pkt_flags |= PKTF_REASSEMBLED; |
| 379 | ip6stat.ip6s_atmfrag_rcvd++; |
| 380 | in6_ifstat_inc(dstifp, ifs6_atmfrag_rcvd); |
| 381 | *mp = m; |
| 382 | *offp = offset; |
| 383 | return ip6f->ip6f_nxt; |
| 384 | } |
| 385 | |
| 386 | /* |
| 387 | * Leverage partial checksum offload for simple UDP/IP fragments, |
| 388 | * as that is the most common case. |
| 389 | * |
| 390 | * Perform 1's complement adjustment of octets that got included/ |
| 391 | * excluded in the hardware-calculated checksum value. Also take |
| 392 | * care of any trailing bytes and subtract out their partial sum. |
| 393 | */ |
| 394 | if (ip6f->ip6f_nxt == IPPROTO_UDP && |
| 395 | offset == (sizeof(*ip6) + sizeof(*ip6f)) && |
| 396 | (m->m_pkthdr.csum_flags & |
| 397 | (CSUM_DATA_VALID | CSUM_PARTIAL | CSUM_PSEUDO_HDR)) == |
| 398 | (CSUM_DATA_VALID | CSUM_PARTIAL)) { |
| 399 | uint32_t start = m->m_pkthdr.csum_rx_start; |
| 400 | uint32_t ip_len = (sizeof(*ip6) + ntohs(ip6->ip6_plen)); |
| 401 | int32_t trailer = (m_pktlen(m) - ip_len); |
| 402 | uint32_t swbytes = (uint32_t)trailer; |
| 403 | |
| 404 | csum = m->m_pkthdr.csum_rx_val; |
| 405 | |
| 406 | ASSERT(trailer >= 0); |
| 407 | if (start != offset || trailer != 0) { |
| 408 | uint16_t s = 0, d = 0; |
| 409 | |
| 410 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) { |
| 411 | s = ip6->ip6_src.s6_addr16[1]; |
| 412 | ip6->ip6_src.s6_addr16[1] = 0; |
| 413 | } |
| 414 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { |
| 415 | d = ip6->ip6_dst.s6_addr16[1]; |
| 416 | ip6->ip6_dst.s6_addr16[1] = 0; |
| 417 | } |
| 418 | |
| 419 | /* callee folds in sum */ |
| 420 | csum = m_adj_sum16(m, start, offset, |
| 421 | (ip_len - offset), csum); |
| 422 | if (offset > start) { |
| 423 | swbytes += (offset - start); |
| 424 | } else { |
| 425 | swbytes += (start - offset); |
| 426 | } |
| 427 | |
| 428 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) { |
| 429 | ip6->ip6_src.s6_addr16[1] = s; |
| 430 | } |
| 431 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { |
| 432 | ip6->ip6_dst.s6_addr16[1] = d; |
| 433 | } |
| 434 | } |
| 435 | csum_flags = m->m_pkthdr.csum_flags; |
| 436 | |
| 437 | if (swbytes != 0) { |
| 438 | udp_in6_cksum_stats(swbytes); |
| 439 | } |
| 440 | if (trailer != 0) { |
| 441 | m_adj(m, -trailer); |
| 442 | } |
| 443 | } else { |
| 444 | csum = 0; |
| 445 | csum_flags = 0; |
| 446 | } |
| 447 | |
| 448 | /* Invalidate checksum */ |
| 449 | m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID; |
| 450 | |
| 451 | ip6stat.ip6s_fragments++; |
| 452 | in6_ifstat_inc(dstifp, ifs6_reass_reqd); |
| 453 | |
| 454 | lck_mtx_lock(lck: &ip6qlock); |
| 455 | locked = 1; |
| 456 | |
| 457 | for (q6 = ip6q.ip6q_next; q6 != &ip6q; q6 = q6->ip6q_next) { |
| 458 | if (ip6f->ip6f_ident == q6->ip6q_ident && |
| 459 | in6_are_addr_equal_scoped(&ip6->ip6_src, &q6->ip6q_src, ip6_input_getsrcifscope(m), q6->ip6q_src_ifscope) && |
| 460 | in6_are_addr_equal_scoped(&ip6->ip6_dst, &q6->ip6q_dst, ip6_input_getdstifscope(m), q6->ip6q_dst_ifscope)) { |
| 461 | break; |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | if (q6 == &ip6q) { |
| 466 | /* |
| 467 | * Create a reassembly queue as this is the first fragment to |
| 468 | * arrive. |
| 469 | * By first frag, we don't mean the one with offset 0, but |
| 470 | * any of the fragments of the fragmented packet that has |
| 471 | * reached us first. |
| 472 | */ |
| 473 | first_frag = 1; |
| 474 | |
| 475 | q6 = ip6q_alloc(); |
| 476 | if (q6 == NULL) { |
| 477 | goto dropfrag; |
| 478 | } |
| 479 | |
| 480 | frag6_insque(q6, &ip6q); |
| 481 | frag6_nfragpackets++; |
| 482 | |
| 483 | /* ip6q_nxt will be filled afterwards, from 1st fragment */ |
| 484 | q6->ip6q_down = q6->ip6q_up = (struct ip6asfrag *)q6; |
| 485 | #ifdef notyet |
| 486 | q6->ip6q_nxtp = (u_char *)nxtp; |
| 487 | #endif |
| 488 | q6->ip6q_ident = ip6f->ip6f_ident; |
| 489 | q6->ip6q_ttl = IPV6_FRAGTTL; |
| 490 | q6->ip6q_src = ip6->ip6_src; |
| 491 | q6->ip6q_dst = ip6->ip6_dst; |
| 492 | q6->ip6q_dst_ifscope = IN6_IS_SCOPE_EMBED(&q6->ip6q_dst) ? ip6_input_getdstifscope(m) : IFSCOPE_NONE; |
| 493 | q6->ip6q_src_ifscope = IN6_IS_SCOPE_EMBED(&q6->ip6q_src) ? ip6_input_getsrcifscope(m) : IFSCOPE_NONE; |
| 494 | q6->ip6q_ecn = |
| 495 | (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK; |
| 496 | q6->ip6q_unfrglen = -1; /* The 1st fragment has not arrived. */ |
| 497 | |
| 498 | q6->ip6q_nfrag = 0; |
| 499 | q6->ip6q_flags = 0; |
| 500 | |
| 501 | /* |
| 502 | * If the first fragment has valid checksum offload |
| 503 | * info, the rest of fragments are eligible as well. |
| 504 | */ |
| 505 | if (csum_flags != 0) { |
| 506 | q6->ip6q_csum = csum; |
| 507 | q6->ip6q_csum_flags = csum_flags; |
| 508 | } |
| 509 | } |
| 510 | |
| 511 | if (q6->ip6q_flags & IP6QF_DIRTY) { |
| 512 | goto dropfrag; |
| 513 | } |
| 514 | |
| 515 | local_ip6q_unfrglen = q6->ip6q_unfrglen; |
| 516 | local_ip6q_nxt = q6->ip6q_nxt; |
| 517 | |
| 518 | /* |
| 519 | * If it's the 1st fragment, record the length of the |
| 520 | * unfragmentable part and the next header of the fragment header. |
| 521 | * Assume the first fragement to arrive will be correct. |
| 522 | * We do not have any duplicate checks here yet so another packet |
| 523 | * with fragoff == 0 could come and overwrite the ip6q_unfrglen |
| 524 | * and worse, the next header, at any time. |
| 525 | */ |
| 526 | fragoff = ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK); |
| 527 | if (fragoff == 0 && local_ip6q_unfrglen == -1) { |
| 528 | local_ip6q_unfrglen = offset - sizeof(struct ip6_hdr) - |
| 529 | sizeof(struct ip6_frag); |
| 530 | local_ip6q_nxt = ip6f->ip6f_nxt; |
| 531 | /* XXX ECN? */ |
| 532 | } |
| 533 | |
| 534 | /* |
| 535 | * Check that the reassembled packet would not exceed 65535 bytes |
| 536 | * in size. |
| 537 | * If it would exceed, discard the fragment and return an ICMP error. |
| 538 | */ |
| 539 | frgpartlen = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - offset; |
| 540 | if (local_ip6q_unfrglen >= 0) { |
| 541 | /* The 1st fragment has already arrived. */ |
| 542 | if (local_ip6q_unfrglen + fragoff + frgpartlen > IPV6_MAXPACKET) { |
| 543 | lck_mtx_unlock(lck: &ip6qlock); |
| 544 | locked = 0; |
| 545 | icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, |
| 546 | offset - sizeof(struct ip6_frag) + |
| 547 | offsetof(struct ip6_frag, ip6f_offlg)); |
| 548 | m = NULL; |
| 549 | goto done; |
| 550 | } |
| 551 | } else if (fragoff + frgpartlen > IPV6_MAXPACKET) { |
| 552 | lck_mtx_unlock(lck: &ip6qlock); |
| 553 | locked = 0; |
| 554 | icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, |
| 555 | offset - sizeof(struct ip6_frag) + |
| 556 | offsetof(struct ip6_frag, ip6f_offlg)); |
| 557 | m = NULL; |
| 558 | goto done; |
| 559 | } |
| 560 | /* |
| 561 | * If it's the first fragment, do the above check for each |
| 562 | * fragment already stored in the reassembly queue. |
| 563 | */ |
| 564 | if (fragoff == 0) { |
| 565 | /* |
| 566 | * https://tools.ietf.org/html/rfc8200#page-20 |
| 567 | * If the first fragment does not include all headers through an |
| 568 | * Upper-Layer header, then that fragment should be discarded and |
| 569 | * an ICMP Parameter Problem, Code 3, message should be sent to |
| 570 | * the source of the fragment, with the Pointer field set to zero. |
| 571 | */ |
| 572 | if (!ip6_pkt_has_ulp(m)) { |
| 573 | lck_mtx_unlock(lck: &ip6qlock); |
| 574 | locked = 0; |
| 575 | icmp6_error(m, ICMP6_PARAM_PROB, |
| 576 | ICMP6_PARAMPROB_FIRSTFRAG_INCOMP_HDR, 0); |
| 577 | m = NULL; |
| 578 | goto done; |
| 579 | } |
| 580 | for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6; |
| 581 | af6 = af6dwn) { |
| 582 | af6dwn = af6->ip6af_down; |
| 583 | |
| 584 | if (local_ip6q_unfrglen + af6->ip6af_off + af6->ip6af_frglen > |
| 585 | IPV6_MAXPACKET) { |
| 586 | struct mbuf *merr = IP6_REASS_MBUF(af6); |
| 587 | struct ip6_hdr *ip6err; |
| 588 | int erroff = af6->ip6af_offset; |
| 589 | |
| 590 | /* dequeue the fragment. */ |
| 591 | frag6_deq(af6); |
| 592 | ip6af_free(af6); |
| 593 | |
| 594 | /* adjust pointer. */ |
| 595 | ip6err = mtod(merr, struct ip6_hdr *); |
| 596 | |
| 597 | /* |
| 598 | * Restore source and destination addresses |
| 599 | * in the erroneous IPv6 header. |
| 600 | */ |
| 601 | ip6err->ip6_src = q6->ip6q_src; |
| 602 | ip6err->ip6_dst = q6->ip6q_dst; |
| 603 | ip6_output_setdstifscope(m, q6->ip6q_dst_ifscope, NULL); |
| 604 | ip6_output_setsrcifscope(m, q6->ip6q_src_ifscope, NULL); |
| 605 | frag6_save_context(m: merr, |
| 606 | val: erroff - sizeof(struct ip6_frag) + |
| 607 | offsetof(struct ip6_frag, ip6f_offlg)); |
| 608 | |
| 609 | MBUFQ_ENQUEUE(&diq6, merr); |
| 610 | } |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | ip6af = ip6af_alloc(); |
| 615 | if (ip6af == NULL) { |
| 616 | goto dropfrag; |
| 617 | } |
| 618 | |
| 619 | ip6af->ip6af_mff = ip6f->ip6f_offlg & IP6F_MORE_FRAG; |
| 620 | ip6af->ip6af_off = fragoff; |
| 621 | ip6af->ip6af_frglen = frgpartlen; |
| 622 | ip6af->ip6af_offset = offset; |
| 623 | IP6_REASS_MBUF(ip6af) = m; |
| 624 | |
| 625 | if (first_frag) { |
| 626 | af6 = (struct ip6asfrag *)q6; |
| 627 | goto insert; |
| 628 | } |
| 629 | |
| 630 | /* |
| 631 | * Handle ECN by comparing this segment with the first one; |
| 632 | * if CE is set, do not lose CE. |
| 633 | * drop if CE and not-ECT are mixed for the same packet. |
| 634 | */ |
| 635 | ecn = (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK; |
| 636 | ecn0 = q6->ip6q_ecn; |
| 637 | if (ecn == IPTOS_ECN_CE) { |
| 638 | if (ecn0 == IPTOS_ECN_NOTECT) { |
| 639 | ip6af_free(ip6af); |
| 640 | goto dropfrag; |
| 641 | } |
| 642 | if (ecn0 != IPTOS_ECN_CE) { |
| 643 | q6->ip6q_ecn = IPTOS_ECN_CE; |
| 644 | } |
| 645 | } |
| 646 | if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT) { |
| 647 | ip6af_free(ip6af); |
| 648 | goto dropfrag; |
| 649 | } |
| 650 | |
| 651 | /* |
| 652 | * Find a segment which begins after this one does. |
| 653 | */ |
| 654 | for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6; |
| 655 | af6 = af6->ip6af_down) { |
| 656 | if (af6->ip6af_off > ip6af->ip6af_off) { |
| 657 | break; |
| 658 | } |
| 659 | } |
| 660 | |
| 661 | /* |
| 662 | * As per RFC 8200 reassembly rules, we MUST drop the entire |
| 663 | * chain of fragments for a packet to be assembled, if we receive |
| 664 | * any overlapping fragments. |
| 665 | * https://tools.ietf.org/html/rfc8200#page-20 |
| 666 | * |
| 667 | * To avoid more conditional code, just reuse frag6_freef and defer |
| 668 | * its call to post fragment insertion in the queue. |
| 669 | */ |
| 670 | if (af6->ip6af_up != (struct ip6asfrag *)q6) { |
| 671 | if (af6->ip6af_up->ip6af_off == ip6af->ip6af_off) { |
| 672 | if (af6->ip6af_up->ip6af_frglen != ip6af->ip6af_frglen) { |
| 673 | drop_fragq = TRUE; |
| 674 | } else { |
| 675 | /* |
| 676 | * XXX Ideally we should be comparing the entire |
| 677 | * packet here but for now just use off and fraglen |
| 678 | * to ignore a duplicate fragment. |
| 679 | */ |
| 680 | ip6af_free(ip6af); |
| 681 | goto dropfrag; |
| 682 | } |
| 683 | } else { |
| 684 | i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen |
| 685 | - ip6af->ip6af_off; |
| 686 | if (i > 0) { |
| 687 | drop_fragq = TRUE; |
| 688 | } |
| 689 | } |
| 690 | } |
| 691 | |
| 692 | if (af6 != (struct ip6asfrag *)q6) { |
| 693 | /* |
| 694 | * Given that we break when af6->ip6af_off > ip6af->ip6af_off, |
| 695 | * we shouldn't need a check for duplicate fragment here. |
| 696 | * For now just assert. |
| 697 | */ |
| 698 | VERIFY(af6->ip6af_off != ip6af->ip6af_off); |
| 699 | i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off; |
| 700 | if (i > 0) { |
| 701 | drop_fragq = TRUE; |
| 702 | } |
| 703 | } |
| 704 | |
| 705 | /* |
| 706 | * If this fragment contains similar checksum offload info |
| 707 | * as that of the existing ones, accumulate checksum. Otherwise, |
| 708 | * invalidate checksum offload info for the entire datagram. |
| 709 | */ |
| 710 | if (csum_flags != 0 && csum_flags == q6->ip6q_csum_flags) { |
| 711 | q6->ip6q_csum += csum; |
| 712 | } else if (q6->ip6q_csum_flags != 0) { |
| 713 | q6->ip6q_csum_flags = 0; |
| 714 | } |
| 715 | |
| 716 | insert: |
| 717 | /* |
| 718 | * Stick new segment in its place; |
| 719 | * check for complete reassembly. |
| 720 | * Move to front of packet queue, as we are |
| 721 | * the most recently active fragmented packet. |
| 722 | */ |
| 723 | frag6_enq(ip6af, af6->ip6af_up); |
| 724 | frag6_nfrags++; |
| 725 | q6->ip6q_nfrag++; |
| 726 | |
| 727 | /* |
| 728 | * This holds true, when we receive overlapping fragments. |
| 729 | * We must silently drop all the fragments we have received |
| 730 | * so far. |
| 731 | * Also mark q6 as dirty, so as to not add any new fragments to it. |
| 732 | * Make sure even q6 marked dirty is kept till timer expires for |
| 733 | * reassembly and when that happens, silenty get rid of q6 |
| 734 | */ |
| 735 | if (drop_fragq) { |
| 736 | struct fq6_head dfq6 = {0}; |
| 737 | MBUFQ_INIT(&dfq6); /* for deferred frees */ |
| 738 | q6->ip6q_flags |= IP6QF_DIRTY; |
| 739 | /* Purge all the fragments but do not free q6 */ |
| 740 | frag6_purgef(q6, &dfq6, NULL); |
| 741 | af6 = NULL; |
| 742 | |
| 743 | /* free fragments that need to be freed */ |
| 744 | if (!MBUFQ_EMPTY(&dfq6)) { |
| 745 | MBUFQ_DRAIN(&dfq6); |
| 746 | } |
| 747 | VERIFY(MBUFQ_EMPTY(&dfq6)); |
| 748 | /* |
| 749 | * Just in case the above logic got anything added |
| 750 | * to diq6, drain it. |
| 751 | * Please note that these mbufs are not present in the |
| 752 | * fragment queue and are added to diq6 for sending |
| 753 | * ICMPv6 error. |
| 754 | * Given that the current fragment was an overlapping |
| 755 | * fragment and the RFC requires us to not send any |
| 756 | * ICMPv6 errors while purging the entire queue. |
| 757 | * Just empty it out. |
| 758 | */ |
| 759 | if (!MBUFQ_EMPTY(&diq6)) { |
| 760 | MBUFQ_DRAIN(&diq6); |
| 761 | } |
| 762 | VERIFY(MBUFQ_EMPTY(&diq6)); |
| 763 | /* |
| 764 | * MBUFQ_DRAIN would have drained all the mbufs |
| 765 | * in the fragment queue. |
| 766 | * This shouldn't be needed as we are returning IPPROTO_DONE |
| 767 | * from here but change the passed mbuf pointer to NULL. |
| 768 | */ |
| 769 | *mp = NULL; |
| 770 | lck_mtx_unlock(lck: &ip6qlock); |
| 771 | return IPPROTO_DONE; |
| 772 | } |
| 773 | |
| 774 | /* |
| 775 | * We're keeping the fragment. |
| 776 | */ |
| 777 | q6->ip6q_unfrglen = local_ip6q_unfrglen; |
| 778 | q6->ip6q_nxt = local_ip6q_nxt; |
| 779 | |
| 780 | next = 0; |
| 781 | for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6; |
| 782 | af6 = af6->ip6af_down) { |
| 783 | if (af6->ip6af_off != next) { |
| 784 | lck_mtx_unlock(lck: &ip6qlock); |
| 785 | locked = 0; |
| 786 | m = NULL; |
| 787 | goto done; |
| 788 | } |
| 789 | next += af6->ip6af_frglen; |
| 790 | } |
| 791 | if (af6->ip6af_up->ip6af_mff) { |
| 792 | lck_mtx_unlock(lck: &ip6qlock); |
| 793 | locked = 0; |
| 794 | m = NULL; |
| 795 | goto done; |
| 796 | } |
| 797 | |
| 798 | /* |
| 799 | * Reassembly is complete; concatenate fragments. |
| 800 | */ |
| 801 | ip6af = q6->ip6q_down; |
| 802 | t = m = IP6_REASS_MBUF(ip6af); |
| 803 | af6 = ip6af->ip6af_down; |
| 804 | frag6_deq(ip6af); |
| 805 | while (af6 != (struct ip6asfrag *)q6) { |
| 806 | af6dwn = af6->ip6af_down; |
| 807 | frag6_deq(af6); |
| 808 | while (t->m_next) { |
| 809 | t = t->m_next; |
| 810 | } |
| 811 | t->m_next = IP6_REASS_MBUF(af6); |
| 812 | m_adj(t->m_next, af6->ip6af_offset); |
| 813 | ip6af_free(af6); |
| 814 | af6 = af6dwn; |
| 815 | } |
| 816 | |
| 817 | /* |
| 818 | * Store partial hardware checksum info from the fragment queue; |
| 819 | * the receive start offset is set to 40 bytes (see code at the |
| 820 | * top of this routine.) |
| 821 | */ |
| 822 | if (q6->ip6q_csum_flags != 0) { |
| 823 | csum = q6->ip6q_csum; |
| 824 | |
| 825 | ADDCARRY(csum); |
| 826 | |
| 827 | m->m_pkthdr.csum_rx_val = (u_int16_t)csum; |
| 828 | m->m_pkthdr.csum_rx_start = sizeof(struct ip6_hdr); |
| 829 | m->m_pkthdr.csum_flags = q6->ip6q_csum_flags; |
| 830 | } else if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) || |
| 831 | (m->m_pkthdr.pkt_flags & PKTF_LOOP)) { |
| 832 | /* loopback checksums are always OK */ |
| 833 | m->m_pkthdr.csum_data = 0xffff; |
| 834 | m->m_pkthdr.csum_flags = CSUM_DATA_VALID | CSUM_PSEUDO_HDR; |
| 835 | } |
| 836 | |
| 837 | /* adjust offset to point where the original next header starts */ |
| 838 | offset = ip6af->ip6af_offset - sizeof(struct ip6_frag); |
| 839 | ip6af_free(ip6af); |
| 840 | ip6 = mtod(m, struct ip6_hdr *); |
| 841 | ip6->ip6_plen = htons((uint16_t)(next + offset - sizeof(struct ip6_hdr))); |
| 842 | ip6->ip6_src = q6->ip6q_src; |
| 843 | ip6->ip6_dst = q6->ip6q_dst; |
| 844 | ip6_output_setdstifscope(m, q6->ip6q_dst_ifscope, NULL); |
| 845 | ip6_output_setsrcifscope(m, q6->ip6q_src_ifscope, NULL); |
| 846 | if (q6->ip6q_ecn == IPTOS_ECN_CE) { |
| 847 | ip6->ip6_flow |= htonl(IPTOS_ECN_CE << 20); |
| 848 | } |
| 849 | |
| 850 | nxt = q6->ip6q_nxt; |
| 851 | #ifdef notyet |
| 852 | *q6->ip6q_nxtp = (u_char)(nxt & 0xff); |
| 853 | #endif |
| 854 | |
| 855 | /* Delete frag6 header */ |
| 856 | if (m->m_len >= offset + sizeof(struct ip6_frag)) { |
| 857 | /* This is the only possible case with !PULLDOWN_TEST */ |
| 858 | ovbcopy(from: (caddr_t)ip6, to: (caddr_t)ip6 + sizeof(struct ip6_frag), |
| 859 | len: offset); |
| 860 | m->m_data += sizeof(struct ip6_frag); |
| 861 | m->m_len -= sizeof(struct ip6_frag); |
| 862 | } else { |
| 863 | /* this comes with no copy if the boundary is on cluster */ |
| 864 | if ((t = m_split(m, offset, M_DONTWAIT)) == NULL) { |
| 865 | frag6_remque(q6); |
| 866 | frag6_nfragpackets--; |
| 867 | frag6_nfrags -= q6->ip6q_nfrag; |
| 868 | ip6q_free(q6); |
| 869 | goto dropfrag; |
| 870 | } |
| 871 | m_adj(t, sizeof(struct ip6_frag)); |
| 872 | m_cat(m, t); |
| 873 | } |
| 874 | |
| 875 | /* |
| 876 | * Store NXT to the original. |
| 877 | */ |
| 878 | { |
| 879 | char *prvnxtp = ip6_get_prevhdr(m, offset); /* XXX */ |
| 880 | *prvnxtp = nxt; |
| 881 | } |
| 882 | |
| 883 | frag6_remque(q6); |
| 884 | frag6_nfragpackets--; |
| 885 | frag6_nfrags -= q6->ip6q_nfrag; |
| 886 | ip6q_free(q6); |
| 887 | |
| 888 | if (m->m_flags & M_PKTHDR) { /* Isn't it always true? */ |
| 889 | m_fixhdr(m); |
| 890 | /* |
| 891 | * Mark packet as reassembled |
| 892 | * In ICMPv6 processing, we drop certain |
| 893 | * NDP messages that are not expected to |
| 894 | * have fragment header based on recommendations |
| 895 | * against security vulnerability as described in |
| 896 | * RFC 6980. |
| 897 | */ |
| 898 | m->m_pkthdr.pkt_flags |= PKTF_REASSEMBLED; |
| 899 | } |
| 900 | ip6stat.ip6s_reassembled++; |
| 901 | |
| 902 | /* |
| 903 | * Tell launch routine the next header |
| 904 | */ |
| 905 | *mp = m; |
| 906 | *offp = offset; |
| 907 | |
| 908 | /* arm the purge timer if not already and if there's work to do */ |
| 909 | frag6_sched_timeout(); |
| 910 | lck_mtx_unlock(lck: &ip6qlock); |
| 911 | in6_ifstat_inc(dstifp, ifs6_reass_ok); |
| 912 | frag6_icmp6_paramprob_error(diq6: &diq6); |
| 913 | VERIFY(MBUFQ_EMPTY(&diq6)); |
| 914 | return nxt; |
| 915 | |
| 916 | done: |
| 917 | VERIFY(m == NULL); |
| 918 | *mp = m; |
| 919 | if (!locked) { |
| 920 | if (frag6_nfragpackets == 0) { |
| 921 | frag6_icmp6_paramprob_error(diq6: &diq6); |
| 922 | VERIFY(MBUFQ_EMPTY(&diq6)); |
| 923 | return IPPROTO_DONE; |
| 924 | } |
| 925 | lck_mtx_lock(lck: &ip6qlock); |
| 926 | } |
| 927 | /* arm the purge timer if not already and if there's work to do */ |
| 928 | frag6_sched_timeout(); |
| 929 | lck_mtx_unlock(lck: &ip6qlock); |
| 930 | frag6_icmp6_paramprob_error(diq6: &diq6); |
| 931 | VERIFY(MBUFQ_EMPTY(&diq6)); |
| 932 | return IPPROTO_DONE; |
| 933 | |
| 934 | dropfrag: |
| 935 | ip6stat.ip6s_fragdropped++; |
| 936 | /* arm the purge timer if not already and if there's work to do */ |
| 937 | frag6_sched_timeout(); |
| 938 | lck_mtx_unlock(lck: &ip6qlock); |
| 939 | in6_ifstat_inc(dstifp, ifs6_reass_fail); |
| 940 | m_freem(m); |
| 941 | *mp = NULL; |
| 942 | frag6_icmp6_paramprob_error(diq6: &diq6); |
| 943 | VERIFY(MBUFQ_EMPTY(&diq6)); |
| 944 | return IPPROTO_DONE; |
| 945 | } |
| 946 | |
| 947 | /* |
| 948 | * This routine removes the enqueued frames from the passed fragment |
| 949 | * header and enqueues those to dfq6 which is an out-arg for the dequeued |
| 950 | * fragments. |
| 951 | * If the caller also provides diq6, this routine also enqueues the 0 offset |
| 952 | * fragment to that list as it potentially gets used by the caller |
| 953 | * to prepare the relevant ICMPv6 error message (time exceeded or |
| 954 | * param problem). |
| 955 | * It leaves the fragment header object (q6) intact. |
| 956 | */ |
| 957 | static void |
| 958 | frag6_purgef(struct ip6q *q6, struct fq6_head *dfq6, struct fq6_head *diq6) |
| 959 | { |
| 960 | struct ip6asfrag *af6 = NULL; |
| 961 | struct ip6asfrag *down6 = NULL; |
| 962 | |
| 963 | LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED); |
| 964 | |
| 965 | for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6; |
| 966 | af6 = down6) { |
| 967 | struct mbuf *m = IP6_REASS_MBUF(af6); |
| 968 | |
| 969 | down6 = af6->ip6af_down; |
| 970 | frag6_deq(af6); |
| 971 | |
| 972 | /* |
| 973 | * If caller wants to generate ICMP time-exceeded, |
| 974 | * as indicated by the argument diq6, return it for |
| 975 | * the first fragment and add others to the fragment |
| 976 | * free queue. |
| 977 | */ |
| 978 | if (af6->ip6af_off == 0 && diq6 != NULL) { |
| 979 | struct ip6_hdr *ip6; |
| 980 | |
| 981 | /* adjust pointer */ |
| 982 | ip6 = mtod(m, struct ip6_hdr *); |
| 983 | |
| 984 | /* restore source and destination addresses */ |
| 985 | ip6->ip6_src = q6->ip6q_src; |
| 986 | ip6->ip6_dst = q6->ip6q_dst; |
| 987 | ip6_output_setdstifscope(m, q6->ip6q_dst_ifscope, NULL); |
| 988 | ip6_output_setsrcifscope(m, q6->ip6q_src_ifscope, NULL); |
| 989 | MBUFQ_ENQUEUE(diq6, m); |
| 990 | } else { |
| 991 | MBUFQ_ENQUEUE(dfq6, m); |
| 992 | } |
| 993 | ip6af_free(af6); |
| 994 | } |
| 995 | } |
| 996 | |
| 997 | /* |
| 998 | * This routine removes the enqueued frames from the passed fragment |
| 999 | * header and enqueues those to dfq6 which is an out-arg for the dequeued |
| 1000 | * fragments. |
| 1001 | * If the caller also provides diq6, this routine also enqueues the 0 offset |
| 1002 | * fragment to that list as it potentially gets used by the caller |
| 1003 | * to prepare the relevant ICMPv6 error message (time exceeded or |
| 1004 | * param problem). |
| 1005 | * It also remove the fragment header object from the queue and frees it. |
| 1006 | */ |
| 1007 | static void |
| 1008 | frag6_freef(struct ip6q *q6, struct fq6_head *dfq6, struct fq6_head *diq6) |
| 1009 | { |
| 1010 | frag6_purgef(q6, dfq6, diq6); |
| 1011 | frag6_remque(q6); |
| 1012 | frag6_nfragpackets--; |
| 1013 | frag6_nfrags -= q6->ip6q_nfrag; |
| 1014 | ip6q_free(q6); |
| 1015 | } |
| 1016 | |
| 1017 | /* |
| 1018 | * Put an ip fragment on a reassembly chain. |
| 1019 | * Like insque, but pointers in middle of structure. |
| 1020 | */ |
| 1021 | void |
| 1022 | frag6_enq(struct ip6asfrag *af6, struct ip6asfrag *up6) |
| 1023 | { |
| 1024 | LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED); |
| 1025 | |
| 1026 | af6->ip6af_up = up6; |
| 1027 | af6->ip6af_down = up6->ip6af_down; |
| 1028 | up6->ip6af_down->ip6af_up = af6; |
| 1029 | up6->ip6af_down = af6; |
| 1030 | } |
| 1031 | |
| 1032 | /* |
| 1033 | * To frag6_enq as remque is to insque. |
| 1034 | */ |
| 1035 | void |
| 1036 | frag6_deq(struct ip6asfrag *af6) |
| 1037 | { |
| 1038 | LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED); |
| 1039 | |
| 1040 | af6->ip6af_up->ip6af_down = af6->ip6af_down; |
| 1041 | af6->ip6af_down->ip6af_up = af6->ip6af_up; |
| 1042 | } |
| 1043 | |
| 1044 | void |
| 1045 | frag6_insque(struct ip6q *new, struct ip6q *old) |
| 1046 | { |
| 1047 | LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED); |
| 1048 | |
| 1049 | new->ip6q_prev = old; |
| 1050 | new->ip6q_next = old->ip6q_next; |
| 1051 | old->ip6q_next->ip6q_prev = new; |
| 1052 | old->ip6q_next = new; |
| 1053 | } |
| 1054 | |
| 1055 | void |
| 1056 | frag6_remque(struct ip6q *p6) |
| 1057 | { |
| 1058 | LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED); |
| 1059 | |
| 1060 | p6->ip6q_prev->ip6q_next = p6->ip6q_next; |
| 1061 | p6->ip6q_next->ip6q_prev = p6->ip6q_prev; |
| 1062 | } |
| 1063 | |
| 1064 | /* |
| 1065 | * IPv6 reassembling timer processing; |
| 1066 | * if a timer expires on a reassembly |
| 1067 | * queue, discard it. |
| 1068 | */ |
| 1069 | static void |
| 1070 | frag6_timeout(void *arg) |
| 1071 | { |
| 1072 | #pragma unused(arg) |
| 1073 | struct fq6_head dfq6, diq6; |
| 1074 | struct fq6_head *diq6_tmp = NULL; |
| 1075 | struct ip6q *q6; |
| 1076 | |
| 1077 | MBUFQ_INIT(&dfq6); /* for deferred frees */ |
| 1078 | MBUFQ_INIT(&diq6); /* for deferred ICMP time exceeded errors */ |
| 1079 | |
| 1080 | /* |
| 1081 | * Update coarse-grained networking timestamp (in sec.); the idea |
| 1082 | * is to piggy-back on the timeout callout to update the counter |
| 1083 | * returnable via net_uptime(). |
| 1084 | */ |
| 1085 | net_update_uptime(); |
| 1086 | |
| 1087 | lck_mtx_lock(lck: &ip6qlock); |
| 1088 | q6 = ip6q.ip6q_next; |
| 1089 | if (q6) { |
| 1090 | while (q6 != &ip6q) { |
| 1091 | --q6->ip6q_ttl; |
| 1092 | q6 = q6->ip6q_next; |
| 1093 | if (q6->ip6q_prev->ip6q_ttl == 0) { |
| 1094 | ip6stat.ip6s_fragtimeout++; |
| 1095 | /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */ |
| 1096 | /* |
| 1097 | * Avoid sending ICMPv6 Time Exceeded for fragment headers |
| 1098 | * that are marked dirty. |
| 1099 | */ |
| 1100 | diq6_tmp = (q6->ip6q_prev->ip6q_flags & IP6QF_DIRTY) ? |
| 1101 | NULL : &diq6; |
| 1102 | frag6_freef(q6: q6->ip6q_prev, dfq6: &dfq6, diq6: diq6_tmp); |
| 1103 | } |
| 1104 | } |
| 1105 | } |
| 1106 | /* |
| 1107 | * If we are over the maximum number of fragments |
| 1108 | * (due to the limit being lowered), drain off |
| 1109 | * enough to get down to the new limit. |
| 1110 | */ |
| 1111 | if (ip6_maxfragpackets >= 0) { |
| 1112 | while (frag6_nfragpackets > (unsigned)ip6_maxfragpackets && |
| 1113 | ip6q.ip6q_prev) { |
| 1114 | ip6stat.ip6s_fragoverflow++; |
| 1115 | /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */ |
| 1116 | /* |
| 1117 | * Avoid sending ICMPv6 Time Exceeded for fragment headers |
| 1118 | * that are marked dirty. |
| 1119 | */ |
| 1120 | diq6_tmp = (ip6q.ip6q_prev->ip6q_flags & IP6QF_DIRTY) ? |
| 1121 | NULL : &diq6; |
| 1122 | frag6_freef(q6: ip6q.ip6q_prev, dfq6: &dfq6, diq6: diq6_tmp); |
| 1123 | } |
| 1124 | } |
| 1125 | /* re-arm the purge timer if there's work to do */ |
| 1126 | frag6_timeout_run = 0; |
| 1127 | frag6_sched_timeout(); |
| 1128 | lck_mtx_unlock(lck: &ip6qlock); |
| 1129 | |
| 1130 | /* free fragments that need to be freed */ |
| 1131 | if (!MBUFQ_EMPTY(&dfq6)) { |
| 1132 | MBUFQ_DRAIN(&dfq6); |
| 1133 | } |
| 1134 | |
| 1135 | frag6_icmp6_timeex_error(diq6: &diq6); |
| 1136 | |
| 1137 | VERIFY(MBUFQ_EMPTY(&dfq6)); |
| 1138 | VERIFY(MBUFQ_EMPTY(&diq6)); |
| 1139 | } |
| 1140 | |
| 1141 | static void |
| 1142 | frag6_sched_timeout(void) |
| 1143 | { |
| 1144 | LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED); |
| 1145 | |
| 1146 | if (!frag6_timeout_run && frag6_nfragpackets > 0) { |
| 1147 | frag6_timeout_run = 1; |
| 1148 | timeout(frag6_timeout, NULL, ticks: hz); |
| 1149 | } |
| 1150 | } |
| 1151 | |
| 1152 | /* |
| 1153 | * Drain off all datagram fragments. |
| 1154 | */ |
| 1155 | void |
| 1156 | frag6_drain(void) |
| 1157 | { |
| 1158 | struct fq6_head dfq6, diq6; |
| 1159 | struct fq6_head *diq6_tmp = NULL; |
| 1160 | |
| 1161 | MBUFQ_INIT(&dfq6); /* for deferred frees */ |
| 1162 | MBUFQ_INIT(&diq6); /* for deferred ICMP time exceeded errors */ |
| 1163 | |
| 1164 | lck_mtx_lock(lck: &ip6qlock); |
| 1165 | while (ip6q.ip6q_next != &ip6q) { |
| 1166 | ip6stat.ip6s_fragdropped++; |
| 1167 | /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */ |
| 1168 | /* |
| 1169 | * Avoid sending ICMPv6 Time Exceeded for fragment headers |
| 1170 | * that are marked dirty. |
| 1171 | */ |
| 1172 | diq6_tmp = (ip6q.ip6q_next->ip6q_flags & IP6QF_DIRTY) ? |
| 1173 | NULL : &diq6; |
| 1174 | frag6_freef(q6: ip6q.ip6q_next, dfq6: &dfq6, diq6: diq6_tmp); |
| 1175 | } |
| 1176 | lck_mtx_unlock(lck: &ip6qlock); |
| 1177 | |
| 1178 | /* free fragments that need to be freed */ |
| 1179 | if (!MBUFQ_EMPTY(&dfq6)) { |
| 1180 | MBUFQ_DRAIN(&dfq6); |
| 1181 | } |
| 1182 | |
| 1183 | frag6_icmp6_timeex_error(diq6: &diq6); |
| 1184 | |
| 1185 | VERIFY(MBUFQ_EMPTY(&dfq6)); |
| 1186 | VERIFY(MBUFQ_EMPTY(&diq6)); |
| 1187 | } |
| 1188 | |
| 1189 | static struct ip6q * |
| 1190 | ip6q_alloc(void) |
| 1191 | { |
| 1192 | struct ip6q *q6; |
| 1193 | |
| 1194 | /* |
| 1195 | * See comments in ip6q_updateparams(). Keep the count separate |
| 1196 | * from frag6_nfragpackets since the latter represents the elements |
| 1197 | * already in the reassembly queues. |
| 1198 | */ |
| 1199 | if (ip6q_limit > 0 && ip6q_count > ip6q_limit) { |
| 1200 | return NULL; |
| 1201 | } |
| 1202 | |
| 1203 | q6 = kalloc_type(struct ip6q, Z_NOWAIT | Z_ZERO); |
| 1204 | if (q6 != NULL) { |
| 1205 | os_atomic_inc(&ip6q_count, relaxed); |
| 1206 | } |
| 1207 | return q6; |
| 1208 | } |
| 1209 | |
| 1210 | static void |
| 1211 | ip6q_free(struct ip6q *q6) |
| 1212 | { |
| 1213 | kfree_type(struct ip6q, q6); |
| 1214 | os_atomic_dec(&ip6q_count, relaxed); |
| 1215 | } |
| 1216 | |
| 1217 | static struct ip6asfrag * |
| 1218 | ip6af_alloc(void) |
| 1219 | { |
| 1220 | struct ip6asfrag *af6; |
| 1221 | |
| 1222 | /* |
| 1223 | * See comments in ip6q_updateparams(). Keep the count separate |
| 1224 | * from frag6_nfrags since the latter represents the elements |
| 1225 | * already in the reassembly queues. |
| 1226 | */ |
| 1227 | if (ip6af_limit > 0 && ip6af_count > ip6af_limit) { |
| 1228 | return NULL; |
| 1229 | } |
| 1230 | |
| 1231 | af6 = kalloc_type(struct ip6asfrag, Z_NOWAIT | Z_ZERO); |
| 1232 | if (af6 != NULL) { |
| 1233 | os_atomic_inc(&ip6af_count, relaxed); |
| 1234 | } |
| 1235 | return af6; |
| 1236 | } |
| 1237 | |
| 1238 | static void |
| 1239 | ip6af_free(struct ip6asfrag *af6) |
| 1240 | { |
| 1241 | kfree_type(struct ip6asfrag, af6); |
| 1242 | os_atomic_dec(&ip6af_count, relaxed); |
| 1243 | } |
| 1244 | |
| 1245 | static void |
| 1246 | ip6q_updateparams(void) |
| 1247 | { |
| 1248 | LCK_MTX_ASSERT(&ip6qlock, LCK_MTX_ASSERT_OWNED); |
| 1249 | /* |
| 1250 | * -1 for unlimited allocation. |
| 1251 | */ |
| 1252 | if (ip6_maxfragpackets < 0) { |
| 1253 | ip6q_limit = 0; |
| 1254 | } |
| 1255 | if (ip6_maxfrags < 0) { |
| 1256 | ip6af_limit = 0; |
| 1257 | } |
| 1258 | /* |
| 1259 | * Positive number for specific bound. |
| 1260 | */ |
| 1261 | if (ip6_maxfragpackets > 0) { |
| 1262 | ip6q_limit = ip6_maxfragpackets; |
| 1263 | } |
| 1264 | if (ip6_maxfrags > 0) { |
| 1265 | ip6af_limit = ip6_maxfrags; |
| 1266 | } |
| 1267 | /* |
| 1268 | * Zero specifies no further fragment queue allocation -- set the |
| 1269 | * bound very low, but rely on implementation elsewhere to actually |
| 1270 | * prevent allocation and reclaim current queues. |
| 1271 | */ |
| 1272 | if (ip6_maxfragpackets == 0) { |
| 1273 | ip6q_limit = 1; |
| 1274 | } |
| 1275 | if (ip6_maxfrags == 0) { |
| 1276 | ip6af_limit = 1; |
| 1277 | } |
| 1278 | /* |
| 1279 | * Arm the purge timer if not already and if there's work to do |
| 1280 | */ |
| 1281 | frag6_sched_timeout(); |
| 1282 | } |
| 1283 | |
| 1284 | static int |
| 1285 | sysctl_maxfragpackets SYSCTL_HANDLER_ARGS |
| 1286 | { |
| 1287 | #pragma unused(arg1, arg2) |
| 1288 | int error, i; |
| 1289 | |
| 1290 | lck_mtx_lock(lck: &ip6qlock); |
| 1291 | i = ip6_maxfragpackets; |
| 1292 | error = sysctl_handle_int(oidp, arg1: &i, arg2: 0, req); |
| 1293 | if (error || req->newptr == USER_ADDR_NULL) { |
| 1294 | goto done; |
| 1295 | } |
| 1296 | /* impose bounds */ |
| 1297 | if (i < -1 || i > (nmbclusters / 4)) { |
| 1298 | error = EINVAL; |
| 1299 | goto done; |
| 1300 | } |
| 1301 | ip6_maxfragpackets = i; |
| 1302 | ip6q_updateparams(); |
| 1303 | done: |
| 1304 | lck_mtx_unlock(lck: &ip6qlock); |
| 1305 | return error; |
| 1306 | } |
| 1307 | |
| 1308 | static int |
| 1309 | sysctl_maxfrags SYSCTL_HANDLER_ARGS |
| 1310 | { |
| 1311 | #pragma unused(arg1, arg2) |
| 1312 | int error, i; |
| 1313 | |
| 1314 | lck_mtx_lock(lck: &ip6qlock); |
| 1315 | i = ip6_maxfrags; |
| 1316 | error = sysctl_handle_int(oidp, arg1: &i, arg2: 0, req); |
| 1317 | if (error || req->newptr == USER_ADDR_NULL) { |
| 1318 | goto done; |
| 1319 | } |
| 1320 | /* impose bounds */ |
| 1321 | if (i < -1 || i > (nmbclusters / 4)) { |
| 1322 | error = EINVAL; |
| 1323 | goto done; |
| 1324 | } |
| 1325 | ip6_maxfrags = i; |
| 1326 | ip6q_updateparams(); /* see if we need to arm timer */ |
| 1327 | done: |
| 1328 | lck_mtx_unlock(lck: &ip6qlock); |
| 1329 | return error; |
| 1330 | } |
| 1331 | |