| 1 | /* |
| 2 | * Copyright (c) 2000-2023 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * Copyright (c) 1982, 1986, 1988, 1993 |
| 30 | * The Regents of the University of California. All rights reserved. |
| 31 | * |
| 32 | * Redistribution and use in source and binary forms, with or without |
| 33 | * modification, are permitted provided that the following conditions |
| 34 | * are met: |
| 35 | * 1. Redistributions of source code must retain the above copyright |
| 36 | * notice, this list of conditions and the following disclaimer. |
| 37 | * 2. Redistributions in binary form must reproduce the above copyright |
| 38 | * notice, this list of conditions and the following disclaimer in the |
| 39 | * documentation and/or other materials provided with the distribution. |
| 40 | * 3. All advertising materials mentioning features or use of this software |
| 41 | * must display the following acknowledgement: |
| 42 | * This product includes software developed by the University of |
| 43 | * California, Berkeley and its contributors. |
| 44 | * 4. Neither the name of the University nor the names of its contributors |
| 45 | * may be used to endorse or promote products derived from this software |
| 46 | * without specific prior written permission. |
| 47 | * |
| 48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 58 | * SUCH DAMAGE. |
| 59 | * |
| 60 | * @(#)raw_ip.c 8.7 (Berkeley) 5/15/95 |
| 61 | */ |
| 62 | /* |
| 63 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce |
| 64 | * support for mandatory and extensible security protections. This notice |
| 65 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 66 | * Version 2.0. |
| 67 | */ |
| 68 | |
| 69 | #include <sys/param.h> |
| 70 | #include <sys/systm.h> |
| 71 | #include <sys/kernel.h> |
| 72 | #include <sys/malloc.h> |
| 73 | #include <sys/mbuf.h> |
| 74 | #include <sys/mcache.h> |
| 75 | #include <sys/proc.h> |
| 76 | #include <sys/domain.h> |
| 77 | #include <sys/protosw.h> |
| 78 | #include <sys/socket.h> |
| 79 | #include <sys/socketvar.h> |
| 80 | #include <sys/sysctl.h> |
| 81 | #include <libkern/OSAtomic.h> |
| 82 | #include <kern/zalloc.h> |
| 83 | |
| 84 | #include <pexpert/pexpert.h> |
| 85 | |
| 86 | #include <net/if.h> |
| 87 | #include <net/net_api_stats.h> |
| 88 | #include <net/route.h> |
| 89 | #include <net/content_filter.h> |
| 90 | |
| 91 | #define _IP_VHL |
| 92 | #include <netinet/in.h> |
| 93 | #include <netinet/in_systm.h> |
| 94 | #include <netinet/in_tclass.h> |
| 95 | #include <netinet/ip.h> |
| 96 | #include <netinet/in_pcb.h> |
| 97 | #include <netinet/in_var.h> |
| 98 | #include <netinet/ip_var.h> |
| 99 | |
| 100 | #include <netinet6/in6_pcb.h> |
| 101 | |
| 102 | |
| 103 | #if IPSEC |
| 104 | #include <netinet6/ipsec.h> |
| 105 | #endif /*IPSEC*/ |
| 106 | |
| 107 | #if DUMMYNET |
| 108 | #include <netinet/ip_dummynet.h> |
| 109 | #endif /* DUMMYNET */ |
| 110 | |
| 111 | int rip_detach(struct socket *); |
| 112 | int rip_abort(struct socket *); |
| 113 | int rip_disconnect(struct socket *); |
| 114 | int rip_bind(struct socket *, struct sockaddr *, struct proc *); |
| 115 | int rip_connect(struct socket *, struct sockaddr *, struct proc *); |
| 116 | int rip_shutdown(struct socket *); |
| 117 | |
| 118 | struct inpcbhead ripcb; |
| 119 | struct inpcbinfo ripcbinfo; |
| 120 | |
| 121 | /* control hooks for dummynet */ |
| 122 | #if DUMMYNET |
| 123 | ip_dn_ctl_t *ip_dn_ctl_ptr; |
| 124 | #endif /* DUMMYNET */ |
| 125 | |
| 126 | /* |
| 127 | * Nominal space allocated to a raw ip socket. |
| 128 | */ |
| 129 | #define RIPSNDQ 8192 |
| 130 | #define RIPRCVQ 8192 |
| 131 | |
| 132 | static KALLOC_TYPE_DEFINE(ripzone, struct inpcb, NET_KT_DEFAULT); |
| 133 | |
| 134 | /* |
| 135 | * Raw interface to IP protocol. |
| 136 | */ |
| 137 | |
| 138 | /* |
| 139 | * Initialize raw connection block q. |
| 140 | */ |
| 141 | void |
| 142 | rip_init(struct protosw *pp, struct domain *dp) |
| 143 | { |
| 144 | #pragma unused(dp) |
| 145 | static int rip_initialized = 0; |
| 146 | struct inpcbinfo *pcbinfo; |
| 147 | |
| 148 | VERIFY((pp->pr_flags & (PR_INITIALIZED | PR_ATTACHED)) == PR_ATTACHED); |
| 149 | |
| 150 | if (rip_initialized) { |
| 151 | return; |
| 152 | } |
| 153 | rip_initialized = 1; |
| 154 | |
| 155 | LIST_INIT(&ripcb); |
| 156 | ripcbinfo.ipi_listhead = &ripcb; |
| 157 | /* |
| 158 | * XXX We don't use the hash list for raw IP, but it's easier |
| 159 | * to allocate a one entry hash list than it is to check all |
| 160 | * over the place for ipi_hashbase == NULL. |
| 161 | */ |
| 162 | ripcbinfo.ipi_hashbase = hashinit(count: 1, M_PCB, hashmask: &ripcbinfo.ipi_hashmask); |
| 163 | ripcbinfo.ipi_porthashbase = hashinit(count: 1, M_PCB, hashmask: &ripcbinfo.ipi_porthashmask); |
| 164 | |
| 165 | ripcbinfo.ipi_zone = ripzone; |
| 166 | |
| 167 | pcbinfo = &ripcbinfo; |
| 168 | /* |
| 169 | * allocate lock group attribute and group for udp pcb mutexes |
| 170 | */ |
| 171 | pcbinfo->ipi_lock_grp = lck_grp_alloc_init(grp_name: "ripcb" , LCK_GRP_ATTR_NULL); |
| 172 | |
| 173 | /* |
| 174 | * allocate the lock attribute for udp pcb mutexes |
| 175 | */ |
| 176 | lck_attr_setdefault(attr: &pcbinfo->ipi_lock_attr); |
| 177 | lck_rw_init(lck: &pcbinfo->ipi_lock, grp: pcbinfo->ipi_lock_grp, |
| 178 | attr: &pcbinfo->ipi_lock_attr); |
| 179 | |
| 180 | in_pcbinfo_attach(&ripcbinfo); |
| 181 | } |
| 182 | |
| 183 | static uint32_t |
| 184 | rip_inp_input(struct inpcb *inp, struct mbuf *m, int iphlen) |
| 185 | { |
| 186 | struct ip *ip = mtod(m, struct ip *); |
| 187 | struct ifnet *ifp = m->m_pkthdr.rcvif; |
| 188 | struct sockaddr_in ripsrc = { |
| 189 | .sin_len = sizeof(ripsrc), |
| 190 | .sin_family = AF_INET, |
| 191 | .sin_port = 0, |
| 192 | .sin_addr = { .s_addr = 0 }, |
| 193 | .sin_zero = {0, 0, 0, 0, 0, 0, 0, 0, } |
| 194 | }; |
| 195 | struct mbuf *opts = NULL; |
| 196 | boolean_t is_wake_pkt = false; |
| 197 | uint32_t num_delivered = 0; |
| 198 | |
| 199 | #if NECP |
| 200 | if (!necp_socket_is_allowed_to_send_recv_v4(inp, local_port: 0, remote_port: 0, |
| 201 | local_addr: &ip->ip_dst, remote_addr: &ip->ip_src, input_interface: ifp, pf_tag: 0, NULL, NULL, NULL, NULL)) { |
| 202 | /* do not inject data to pcb */ |
| 203 | goto done; |
| 204 | } |
| 205 | #endif /* NECP */ |
| 206 | |
| 207 | ripsrc.sin_addr = ip->ip_src; |
| 208 | |
| 209 | if ((m->m_flags & M_PKTHDR) && (m->m_pkthdr.pkt_flags & PKTF_WAKE_PKT)) { |
| 210 | is_wake_pkt = true; |
| 211 | } |
| 212 | |
| 213 | if ((inp->inp_flags & INP_CONTROLOPTS) != 0 || |
| 214 | SOFLOW_ENABLED(inp->inp_socket) || |
| 215 | SO_RECV_CONTROL_OPTS(inp->inp_socket)) { |
| 216 | if (ip_savecontrol(inp, &opts, ip, m) != 0) { |
| 217 | m_freem(opts); |
| 218 | goto done; |
| 219 | } |
| 220 | } |
| 221 | if (inp->inp_flags & INP_STRIPHDR |
| 222 | #if CONTENT_FILTER |
| 223 | /* |
| 224 | * If socket is subject to Content Filter, delay stripping until reinject |
| 225 | */ |
| 226 | && (!CFIL_DGRAM_FILTERED(inp->inp_socket)) |
| 227 | #endif |
| 228 | ) { |
| 229 | m->m_len -= iphlen; |
| 230 | m->m_pkthdr.len -= iphlen; |
| 231 | m->m_data += iphlen; |
| 232 | } |
| 233 | so_recv_data_stat(inp->inp_socket, m, 0); |
| 234 | if (sbappendaddr(sb: &inp->inp_socket->so_rcv, |
| 235 | asa: (struct sockaddr *)&ripsrc, m0: m, control: opts, NULL) != 0) { |
| 236 | num_delivered = 1; |
| 237 | sorwakeup(so: inp->inp_socket); |
| 238 | if (is_wake_pkt) { |
| 239 | soevent(so: inp->in6p_socket, |
| 240 | SO_FILT_HINT_LOCKED | SO_FILT_HINT_WAKE_PKT); |
| 241 | } |
| 242 | } else { |
| 243 | ipstat.ips_raw_sappend_fail++; |
| 244 | } |
| 245 | done: |
| 246 | return num_delivered; |
| 247 | } |
| 248 | |
| 249 | /* |
| 250 | * The first pass is for IPv4 socket and the second pass for IPv6 |
| 251 | */ |
| 252 | static bool |
| 253 | rip_input_inner(struct mbuf *m, int iphlen, bool is_ipv4_pass, uint32_t *total_delivered) |
| 254 | { |
| 255 | struct inpcb *inp; |
| 256 | struct inpcb *last = NULL; |
| 257 | struct ip *ip = mtod(m, struct ip *); |
| 258 | struct ifnet *ifp = m->m_pkthdr.rcvif; |
| 259 | bool need_ipv6_pass = false; |
| 260 | uint32_t num_delivered = 0; |
| 261 | |
| 262 | lck_rw_lock_shared(lck: &ripcbinfo.ipi_lock); |
| 263 | LIST_FOREACH(inp, &ripcb, inp_list) { |
| 264 | if (is_ipv4_pass) { |
| 265 | if ((inp->inp_vflag & (INP_IPV4 | INP_IPV6)) != INP_IPV4) { |
| 266 | /* Tell if we need to an IPv6 pass */ |
| 267 | need_ipv6_pass = true; |
| 268 | continue; |
| 269 | } |
| 270 | } else { |
| 271 | if ((inp->inp_vflag & (INP_IPV4 | INP_IPV6)) != (INP_IPV4 | INP_IPV6)) { |
| 272 | continue; |
| 273 | } |
| 274 | } |
| 275 | if (inp->inp_ip_p && (inp->inp_ip_p != ip->ip_p)) { |
| 276 | continue; |
| 277 | } |
| 278 | if (inp->inp_laddr.s_addr && |
| 279 | inp->inp_laddr.s_addr != ip->ip_dst.s_addr) { |
| 280 | continue; |
| 281 | } |
| 282 | if (inp->inp_faddr.s_addr && |
| 283 | inp->inp_faddr.s_addr != ip->ip_src.s_addr) { |
| 284 | continue; |
| 285 | } |
| 286 | if (inp_restricted_recv(inp, ifp)) { |
| 287 | continue; |
| 288 | } |
| 289 | if (last != NULL) { |
| 290 | struct mbuf *n = m_copym_mode(m, 0, (int)M_COPYALL, M_DONTWAIT, NULL, NULL, M_COPYM_MUST_COPY_HDR); |
| 291 | |
| 292 | if (n == NULL) { |
| 293 | continue; |
| 294 | } |
| 295 | num_delivered += rip_inp_input(inp: last, m: n, iphlen); |
| 296 | } |
| 297 | last = inp; |
| 298 | } |
| 299 | |
| 300 | /* |
| 301 | * Consume the orignal mbuf 'm' if: |
| 302 | * - it is the first pass and there is no IPv6 raw socket |
| 303 | * - it is the second pass for IPv6 |
| 304 | */ |
| 305 | if (need_ipv6_pass == false || is_ipv4_pass == false) { |
| 306 | if (last != NULL) { |
| 307 | num_delivered += rip_inp_input(inp: last, m, iphlen); |
| 308 | } else { |
| 309 | m_freem(m); |
| 310 | } |
| 311 | } else { |
| 312 | if (last != NULL) { |
| 313 | struct mbuf *n = m_copym_mode(m, 0, (int)M_COPYALL, M_DONTWAIT, NULL, NULL, M_COPYM_MUST_COPY_HDR); |
| 314 | |
| 315 | if (n != NULL) { |
| 316 | num_delivered += rip_inp_input(inp: last, m: n, iphlen); |
| 317 | } |
| 318 | } |
| 319 | } |
| 320 | /* |
| 321 | * Keep the list locked because socket filter may force the socket lock |
| 322 | * to be released when calling sbappendaddr() -- see rdar://7627704 |
| 323 | */ |
| 324 | lck_rw_done(lck: &ripcbinfo.ipi_lock); |
| 325 | |
| 326 | *total_delivered += num_delivered; |
| 327 | |
| 328 | return need_ipv6_pass; |
| 329 | } |
| 330 | |
| 331 | |
| 332 | /* |
| 333 | * Setup generic address and protocol structures |
| 334 | * for raw_input routine, then pass them along with |
| 335 | * mbuf chain. |
| 336 | */ |
| 337 | void |
| 338 | rip_input(struct mbuf *m, int iphlen) |
| 339 | { |
| 340 | uint32_t num_delivered = 0; |
| 341 | bool need_v6_pass = false; |
| 342 | |
| 343 | /* Expect 32-bit aligned data pointer on strict-align platforms */ |
| 344 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); |
| 345 | |
| 346 | /* |
| 347 | * First pass for raw IPv4 sockets that are protected by the inet_domain_mutex lock |
| 348 | */ |
| 349 | need_v6_pass = rip_input_inner(m, iphlen, true, total_delivered: &num_delivered); |
| 350 | |
| 351 | /* |
| 352 | * For the IPv6 pass we need to switch to the inet6_domain_mutex lock |
| 353 | * to protect the raw IPv6 sockets |
| 354 | */ |
| 355 | if (need_v6_pass) { |
| 356 | lck_mtx_unlock(lck: inet_domain_mutex); |
| 357 | |
| 358 | lck_mtx_lock(lck: inet6_domain_mutex); |
| 359 | rip_input_inner(m, iphlen, false, total_delivered: &num_delivered); |
| 360 | lck_mtx_unlock(lck: inet6_domain_mutex); |
| 361 | |
| 362 | lck_mtx_lock(lck: inet_domain_mutex); |
| 363 | } |
| 364 | |
| 365 | if (num_delivered > 0) { |
| 366 | OSAddAtomic(1, &ipstat.ips_delivered); |
| 367 | } else { |
| 368 | OSAddAtomic(1, &ipstat.ips_noproto); |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | /* |
| 373 | * Generate IP header and pass packet to ip_output. |
| 374 | * Tack on options user may have setup with control call. |
| 375 | */ |
| 376 | int |
| 377 | rip_output( |
| 378 | struct mbuf *m, |
| 379 | struct socket *so, |
| 380 | u_int32_t dst, |
| 381 | struct mbuf *control) |
| 382 | { |
| 383 | struct ip *ip; |
| 384 | struct inpcb *inp = sotoinpcb(so); |
| 385 | int flags = (so->so_options & SO_DONTROUTE) | IP_ALLOWBROADCAST; |
| 386 | int inp_flags = inp ? inp->inp_flags : 0; |
| 387 | struct ip_out_args ipoa; |
| 388 | struct ip_moptions *imo; |
| 389 | int tos = IPTOS_UNSPEC; |
| 390 | int error = 0; |
| 391 | #if CONTENT_FILTER |
| 392 | struct m_tag *cfil_tag = NULL; |
| 393 | bool cfil_faddr_use = false; |
| 394 | uint32_t cfil_so_state_change_cnt = 0; |
| 395 | uint32_t cfil_so_options = 0; |
| 396 | int cfil_inp_flags = 0; |
| 397 | struct sockaddr *cfil_faddr = NULL; |
| 398 | struct sockaddr_in *cfil_sin; |
| 399 | u_int32_t cfil_dst = 0; |
| 400 | #endif |
| 401 | |
| 402 | #if CONTENT_FILTER |
| 403 | /* |
| 404 | * If socket is subject to Content Filter and no addr is passed in, |
| 405 | * retrieve CFIL saved state from mbuf and use it if necessary. |
| 406 | */ |
| 407 | if (CFIL_DGRAM_FILTERED(so) && dst == INADDR_ANY) { |
| 408 | cfil_tag = cfil_dgram_get_socket_state(m, state_change_cnt: &cfil_so_state_change_cnt, options: &cfil_so_options, faddr: &cfil_faddr, inp_flags: &cfil_inp_flags); |
| 409 | if (cfil_tag) { |
| 410 | cfil_sin = SIN(cfil_faddr); |
| 411 | flags = (cfil_so_options & SO_DONTROUTE) | IP_ALLOWBROADCAST; |
| 412 | inp_flags = cfil_inp_flags; |
| 413 | if (inp && inp->inp_faddr.s_addr == INADDR_ANY) { |
| 414 | /* |
| 415 | * Socket is unconnected, simply use the saved faddr as 'addr' to go through |
| 416 | * the connect/disconnect logic. |
| 417 | */ |
| 418 | dst = cfil_sin->sin_addr.s_addr; |
| 419 | } else if ((so->so_state_change_cnt != cfil_so_state_change_cnt) && |
| 420 | (inp->inp_fport != cfil_sin->sin_port || |
| 421 | inp->inp_faddr.s_addr != cfil_sin->sin_addr.s_addr)) { |
| 422 | /* |
| 423 | * Socket is connected but socket state and dest addr/port changed. |
| 424 | * We need to use the saved faddr and socket options. |
| 425 | */ |
| 426 | cfil_faddr_use = true; |
| 427 | cfil_dst = cfil_sin->sin_addr.s_addr; |
| 428 | } |
| 429 | m_tag_free(cfil_tag); |
| 430 | } |
| 431 | } |
| 432 | #endif |
| 433 | |
| 434 | if (so->so_state & SS_ISCONNECTED) { |
| 435 | if (dst != INADDR_ANY) { |
| 436 | if (m != NULL) { |
| 437 | m_freem(m); |
| 438 | } |
| 439 | if (control != NULL) { |
| 440 | m_freem(control); |
| 441 | } |
| 442 | return EISCONN; |
| 443 | } |
| 444 | dst = cfil_faddr_use ? cfil_dst : inp->inp_faddr.s_addr; |
| 445 | } else { |
| 446 | if (dst == INADDR_ANY) { |
| 447 | if (m != NULL) { |
| 448 | m_freem(m); |
| 449 | } |
| 450 | if (control != NULL) { |
| 451 | m_freem(control); |
| 452 | } |
| 453 | return ENOTCONN; |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | bzero(s: &ipoa, n: sizeof(ipoa)); |
| 458 | ipoa.ipoa_boundif = IFSCOPE_NONE; |
| 459 | ipoa.ipoa_flags = IPOAF_SELECT_SRCIF; |
| 460 | |
| 461 | int sotc = SO_TC_UNSPEC; |
| 462 | int netsvctype = _NET_SERVICE_TYPE_UNSPEC; |
| 463 | |
| 464 | |
| 465 | if (control != NULL) { |
| 466 | tos = so_tos_from_control(control); |
| 467 | sotc = so_tc_from_control(control, &netsvctype); |
| 468 | |
| 469 | m_freem(control); |
| 470 | control = NULL; |
| 471 | } |
| 472 | if (sotc == SO_TC_UNSPEC) { |
| 473 | sotc = so->so_traffic_class; |
| 474 | netsvctype = so->so_netsvctype; |
| 475 | } |
| 476 | |
| 477 | if (inp == NULL |
| 478 | #if NECP |
| 479 | || (necp_socket_should_use_flow_divert(inp)) |
| 480 | #endif /* NECP */ |
| 481 | ) { |
| 482 | if (m != NULL) { |
| 483 | m_freem(m); |
| 484 | } |
| 485 | VERIFY(control == NULL); |
| 486 | return inp == NULL ? EINVAL : EPROTOTYPE; |
| 487 | } |
| 488 | |
| 489 | flags |= IP_OUTARGS; |
| 490 | /* If socket was bound to an ifindex, tell ip_output about it */ |
| 491 | if (inp->inp_flags & INP_BOUND_IF) { |
| 492 | ipoa.ipoa_boundif = inp->inp_boundifp->if_index; |
| 493 | ipoa.ipoa_flags |= IPOAF_BOUND_IF; |
| 494 | } |
| 495 | if (INP_NO_CELLULAR(inp)) { |
| 496 | ipoa.ipoa_flags |= IPOAF_NO_CELLULAR; |
| 497 | } |
| 498 | if (INP_NO_EXPENSIVE(inp)) { |
| 499 | ipoa.ipoa_flags |= IPOAF_NO_EXPENSIVE; |
| 500 | } |
| 501 | if (INP_NO_CONSTRAINED(inp)) { |
| 502 | ipoa.ipoa_flags |= IPOAF_NO_CONSTRAINED; |
| 503 | } |
| 504 | if (INP_AWDL_UNRESTRICTED(inp)) { |
| 505 | ipoa.ipoa_flags |= IPOAF_AWDL_UNRESTRICTED; |
| 506 | } |
| 507 | if (INP_MANAGEMENT_ALLOWED(inp)) { |
| 508 | ipoa.ipoa_flags |= IPOAF_MANAGEMENT_ALLOWED; |
| 509 | } |
| 510 | ipoa.ipoa_sotc = sotc; |
| 511 | ipoa.ipoa_netsvctype = netsvctype; |
| 512 | |
| 513 | if (inp->inp_flowhash == 0) { |
| 514 | inp_calc_flowhash(inp); |
| 515 | ASSERT(inp->inp_flowhash != 0); |
| 516 | } |
| 517 | |
| 518 | /* |
| 519 | * If the user handed us a complete IP packet, use it. |
| 520 | * Otherwise, allocate an mbuf for a header and fill it in. |
| 521 | */ |
| 522 | if ((inp_flags & INP_HDRINCL) == 0) { |
| 523 | if (m->m_pkthdr.len + sizeof(struct ip) > IP_MAXPACKET) { |
| 524 | m_freem(m); |
| 525 | return EMSGSIZE; |
| 526 | } |
| 527 | M_PREPEND(m, sizeof(struct ip), M_WAIT, 1); |
| 528 | if (m == NULL) { |
| 529 | return ENOBUFS; |
| 530 | } |
| 531 | ip = mtod(m, struct ip *); |
| 532 | if (tos != IPTOS_UNSPEC) { |
| 533 | ip->ip_tos = (uint8_t)(tos & IPTOS_MASK); |
| 534 | } else { |
| 535 | ip->ip_tos = inp->inp_ip_tos; |
| 536 | } |
| 537 | if (inp->inp_flags2 & INP2_DONTFRAG) { |
| 538 | ip->ip_off = IP_DF; |
| 539 | } else { |
| 540 | ip->ip_off = 0; |
| 541 | } |
| 542 | ip->ip_p = inp->inp_ip_p; |
| 543 | ip->ip_len = (uint16_t)m->m_pkthdr.len; |
| 544 | ip->ip_src = inp->inp_laddr; |
| 545 | ip->ip_dst.s_addr = dst; |
| 546 | ip->ip_ttl = inp->inp_ip_ttl; |
| 547 | } else { |
| 548 | if (m->m_pkthdr.len > IP_MAXPACKET) { |
| 549 | m_freem(m); |
| 550 | return EMSGSIZE; |
| 551 | } |
| 552 | ip = mtod(m, struct ip *); |
| 553 | /* |
| 554 | * don't allow both user specified and setsockopt options, |
| 555 | * and don't allow packet length sizes that will crash |
| 556 | */ |
| 557 | if (m->m_pkthdr.len < sizeof(struct ip) || |
| 558 | ((IP_VHL_HL(ip->ip_vhl) != (sizeof(*ip) >> 2)) && inp->inp_options) || |
| 559 | (ip->ip_len > m->m_pkthdr.len) || |
| 560 | (ip->ip_len < (IP_VHL_HL(ip->ip_vhl) << 2))) { |
| 561 | m_freem(m); |
| 562 | return EINVAL; |
| 563 | } |
| 564 | if (ip->ip_id == 0 && !(rfc6864 && IP_OFF_IS_ATOMIC(ntohs(ip->ip_off)))) { |
| 565 | ip->ip_id = ip_randomid((uint64_t)m); |
| 566 | } |
| 567 | /* XXX prevent ip_output from overwriting header fields */ |
| 568 | flags |= IP_RAWOUTPUT; |
| 569 | OSAddAtomic(1, &ipstat.ips_rawout); |
| 570 | } |
| 571 | |
| 572 | if (inp->inp_laddr.s_addr != INADDR_ANY) { |
| 573 | ipoa.ipoa_flags |= IPOAF_BOUND_SRCADDR; |
| 574 | } |
| 575 | |
| 576 | #if NECP |
| 577 | { |
| 578 | necp_kernel_policy_id policy_id; |
| 579 | necp_kernel_policy_id skip_policy_id; |
| 580 | u_int32_t route_rule_id; |
| 581 | u_int32_t pass_flags; |
| 582 | |
| 583 | /* |
| 584 | * We need a route to perform NECP route rule checks |
| 585 | */ |
| 586 | if ((net_qos_policy_restricted != 0 && |
| 587 | ROUTE_UNUSABLE(&inp->inp_route)) |
| 588 | #if CONTENT_FILTER |
| 589 | || cfil_faddr_use |
| 590 | #endif |
| 591 | ) { |
| 592 | struct sockaddr_in to; |
| 593 | struct sockaddr_in from; |
| 594 | struct in_addr laddr = ip->ip_src; |
| 595 | |
| 596 | ROUTE_RELEASE(&inp->inp_route); |
| 597 | |
| 598 | bzero(s: &from, n: sizeof(struct sockaddr_in)); |
| 599 | from.sin_family = AF_INET; |
| 600 | from.sin_len = sizeof(struct sockaddr_in); |
| 601 | from.sin_addr = laddr; |
| 602 | |
| 603 | bzero(s: &to, n: sizeof(struct sockaddr_in)); |
| 604 | to.sin_family = AF_INET; |
| 605 | to.sin_len = sizeof(struct sockaddr_in); |
| 606 | to.sin_addr.s_addr = ip->ip_dst.s_addr; |
| 607 | |
| 608 | if ((error = in_pcbladdr(inp, (struct sockaddr *)&to, |
| 609 | &laddr, ipoa.ipoa_boundif, NULL, 1)) != 0) { |
| 610 | printf("%s in_pcbladdr(%p) error %d\n" , |
| 611 | __func__, inp, error); |
| 612 | m_freem(m); |
| 613 | return error; |
| 614 | } |
| 615 | |
| 616 | inp_update_necp_policy(inp, (struct sockaddr *)&from, |
| 617 | (struct sockaddr *)&to, ipoa.ipoa_boundif); |
| 618 | inp->inp_policyresult.results.qos_marking_gencount = 0; |
| 619 | } |
| 620 | |
| 621 | if (!necp_socket_is_allowed_to_send_recv_v4(inp, local_port: 0, remote_port: 0, |
| 622 | local_addr: &ip->ip_src, remote_addr: &ip->ip_dst, NULL, pf_tag: 0, return_policy_id: &policy_id, return_route_rule_id: &route_rule_id, return_skip_policy_id: &skip_policy_id, return_pass_flags: &pass_flags)) { |
| 623 | m_freem(m); |
| 624 | return EHOSTUNREACH; |
| 625 | } |
| 626 | |
| 627 | necp_mark_packet_from_socket(packet: m, inp, policy_id, route_rule_id, skip_policy_id, pass_flags); |
| 628 | |
| 629 | if (net_qos_policy_restricted != 0) { |
| 630 | struct ifnet *rt_ifp = NULL; |
| 631 | |
| 632 | if (inp->inp_route.ro_rt != NULL) { |
| 633 | rt_ifp = inp->inp_route.ro_rt->rt_ifp; |
| 634 | } |
| 635 | |
| 636 | necp_socket_update_qos_marking(inp, route: inp->inp_route.ro_rt, route_rule_id); |
| 637 | } |
| 638 | } |
| 639 | #endif /* NECP */ |
| 640 | if ((so->so_flags1 & SOF1_QOSMARKING_ALLOWED)) { |
| 641 | ipoa.ipoa_flags |= IPOAF_QOSMARKING_ALLOWED; |
| 642 | } |
| 643 | #if IPSEC |
| 644 | if (inp->inp_sp != NULL && ipsec_setsocket(m, so) != 0) { |
| 645 | m_freem(m); |
| 646 | return ENOBUFS; |
| 647 | } |
| 648 | #endif /*IPSEC*/ |
| 649 | |
| 650 | if (ROUTE_UNUSABLE(&inp->inp_route)) { |
| 651 | ROUTE_RELEASE(&inp->inp_route); |
| 652 | } |
| 653 | |
| 654 | set_packet_service_class(m, so, sotc, 0); |
| 655 | m->m_pkthdr.pkt_flowsrc = FLOWSRC_INPCB; |
| 656 | m->m_pkthdr.pkt_flowid = inp->inp_flowhash; |
| 657 | m->m_pkthdr.pkt_flags |= (PKTF_FLOW_ID | PKTF_FLOW_LOCALSRC | |
| 658 | PKTF_FLOW_RAWSOCK); |
| 659 | m->m_pkthdr.pkt_proto = inp->inp_ip_p; |
| 660 | m->m_pkthdr.tx_rawip_pid = so->last_pid; |
| 661 | m->m_pkthdr.tx_rawip_e_pid = so->e_pid; |
| 662 | if (so->so_flags & SOF_DELEGATED) { |
| 663 | m->m_pkthdr.tx_rawip_e_pid = so->e_pid; |
| 664 | } else { |
| 665 | m->m_pkthdr.tx_rawip_e_pid = 0; |
| 666 | } |
| 667 | #if (DEBUG || DEVELOPMENT) |
| 668 | if (so->so_flags & SOF_MARK_WAKE_PKT) { |
| 669 | so->so_flags &= ~SOF_MARK_WAKE_PKT; |
| 670 | m->m_pkthdr.pkt_flags |= PKTF_WAKE_PKT; |
| 671 | } |
| 672 | #endif /* (DEBUG || DEVELOPMENT) */ |
| 673 | |
| 674 | imo = inp->inp_moptions; |
| 675 | if (imo != NULL) { |
| 676 | IMO_ADDREF(imo); |
| 677 | } |
| 678 | /* |
| 679 | * The domain lock is held across ip_output, so it is okay |
| 680 | * to pass the PCB cached route pointer directly to IP and |
| 681 | * the modules beneath it. |
| 682 | */ |
| 683 | // TODO: PASS DOWN ROUTE RULE ID |
| 684 | error = ip_output(m, inp->inp_options, &inp->inp_route, flags, |
| 685 | imo, &ipoa); |
| 686 | |
| 687 | if (imo != NULL) { |
| 688 | IMO_REMREF(imo); |
| 689 | } |
| 690 | |
| 691 | if (inp->inp_route.ro_rt != NULL) { |
| 692 | struct rtentry *rt = inp->inp_route.ro_rt; |
| 693 | struct ifnet *outif; |
| 694 | |
| 695 | if ((rt->rt_flags & (RTF_MULTICAST | RTF_BROADCAST)) || |
| 696 | inp->inp_socket == NULL || |
| 697 | #if CONTENT_FILTER |
| 698 | /* Discard temporary route for cfil case */ |
| 699 | cfil_faddr_use || |
| 700 | #endif |
| 701 | !(inp->inp_socket->so_state & SS_ISCONNECTED)) { |
| 702 | rt = NULL; /* unusable */ |
| 703 | } |
| 704 | /* |
| 705 | * Always discard the cached route for unconnected |
| 706 | * socket or if it is a multicast route. |
| 707 | */ |
| 708 | if (rt == NULL) { |
| 709 | ROUTE_RELEASE(&inp->inp_route); |
| 710 | } |
| 711 | |
| 712 | /* |
| 713 | * If this is a connected socket and the destination |
| 714 | * route is unicast, update outif with that of the |
| 715 | * route interface used by IP. |
| 716 | */ |
| 717 | if (rt != NULL && |
| 718 | (outif = rt->rt_ifp) != inp->inp_last_outifp) { |
| 719 | inp->inp_last_outifp = outif; |
| 720 | } |
| 721 | } else { |
| 722 | ROUTE_RELEASE(&inp->inp_route); |
| 723 | } |
| 724 | |
| 725 | /* |
| 726 | * If output interface was cellular/expensive/constrained, and this socket is |
| 727 | * denied access to it, generate an event. |
| 728 | */ |
| 729 | if (error != 0 && (ipoa.ipoa_flags & IPOAF_R_IFDENIED) && |
| 730 | (INP_NO_CELLULAR(inp) || INP_NO_EXPENSIVE(inp) || INP_NO_CONSTRAINED(inp))) { |
| 731 | soevent(so, hint: (SO_FILT_HINT_LOCKED | SO_FILT_HINT_IFDENIED)); |
| 732 | } |
| 733 | |
| 734 | return error; |
| 735 | } |
| 736 | |
| 737 | |
| 738 | /* |
| 739 | * Raw IP socket option processing. |
| 740 | */ |
| 741 | int |
| 742 | rip_ctloutput(struct socket *so, struct sockopt *sopt) |
| 743 | { |
| 744 | struct inpcb *inp = sotoinpcb(so); |
| 745 | int error, optval; |
| 746 | |
| 747 | /* Allow <SOL_SOCKET,SO_FLUSH> at this level */ |
| 748 | if (sopt->sopt_level != IPPROTO_IP && |
| 749 | !(sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_FLUSH)) { |
| 750 | return EINVAL; |
| 751 | } |
| 752 | |
| 753 | error = 0; |
| 754 | |
| 755 | switch (sopt->sopt_dir) { |
| 756 | case SOPT_GET: |
| 757 | switch (sopt->sopt_name) { |
| 758 | case IP_HDRINCL: |
| 759 | optval = inp->inp_flags & INP_HDRINCL; |
| 760 | error = sooptcopyout(sopt, data: &optval, len: sizeof optval); |
| 761 | break; |
| 762 | |
| 763 | case IP_STRIPHDR: |
| 764 | optval = inp->inp_flags & INP_STRIPHDR; |
| 765 | error = sooptcopyout(sopt, data: &optval, len: sizeof optval); |
| 766 | break; |
| 767 | |
| 768 | |
| 769 | #if DUMMYNET |
| 770 | case IP_DUMMYNET_GET: |
| 771 | if (!DUMMYNET_LOADED) { |
| 772 | ip_dn_init(); |
| 773 | } |
| 774 | if (DUMMYNET_LOADED) { |
| 775 | error = ip_dn_ctl_ptr(sopt); |
| 776 | } else { |
| 777 | error = ENOPROTOOPT; |
| 778 | } |
| 779 | break; |
| 780 | #endif /* DUMMYNET */ |
| 781 | |
| 782 | default: |
| 783 | error = ip_ctloutput(so, sopt); |
| 784 | break; |
| 785 | } |
| 786 | break; |
| 787 | |
| 788 | case SOPT_SET: |
| 789 | switch (sopt->sopt_name) { |
| 790 | case IP_HDRINCL: |
| 791 | error = sooptcopyin(sopt, &optval, len: sizeof optval, |
| 792 | minlen: sizeof optval); |
| 793 | if (error) { |
| 794 | break; |
| 795 | } |
| 796 | if (optval) { |
| 797 | inp->inp_flags |= INP_HDRINCL; |
| 798 | } else { |
| 799 | inp->inp_flags &= ~INP_HDRINCL; |
| 800 | } |
| 801 | break; |
| 802 | |
| 803 | case IP_STRIPHDR: |
| 804 | error = sooptcopyin(sopt, &optval, len: sizeof optval, |
| 805 | minlen: sizeof optval); |
| 806 | if (error) { |
| 807 | break; |
| 808 | } |
| 809 | if (optval) { |
| 810 | inp->inp_flags |= INP_STRIPHDR; |
| 811 | } else { |
| 812 | inp->inp_flags &= ~INP_STRIPHDR; |
| 813 | } |
| 814 | break; |
| 815 | |
| 816 | |
| 817 | #if DUMMYNET |
| 818 | case IP_DUMMYNET_CONFIGURE: |
| 819 | case IP_DUMMYNET_DEL: |
| 820 | case IP_DUMMYNET_FLUSH: |
| 821 | if (!DUMMYNET_LOADED) { |
| 822 | ip_dn_init(); |
| 823 | } |
| 824 | if (DUMMYNET_LOADED) { |
| 825 | error = ip_dn_ctl_ptr(sopt); |
| 826 | } else { |
| 827 | error = ENOPROTOOPT; |
| 828 | } |
| 829 | break; |
| 830 | #endif /* DUMMYNET */ |
| 831 | |
| 832 | case SO_FLUSH: |
| 833 | if ((error = sooptcopyin(sopt, &optval, len: sizeof(optval), |
| 834 | minlen: sizeof(optval))) != 0) { |
| 835 | break; |
| 836 | } |
| 837 | |
| 838 | error = inp_flush(inp, optval); |
| 839 | break; |
| 840 | |
| 841 | default: |
| 842 | error = ip_ctloutput(so, sopt); |
| 843 | break; |
| 844 | } |
| 845 | break; |
| 846 | } |
| 847 | |
| 848 | return error; |
| 849 | } |
| 850 | |
| 851 | /* |
| 852 | * This function exists solely to receive the PRC_IFDOWN messages which |
| 853 | * are sent by if_down(). It looks for an ifaddr whose ifa_addr is sa, |
| 854 | * and calls in_ifadown() to remove all routes corresponding to that address. |
| 855 | * It also receives the PRC_IFUP messages from if_up() and reinstalls the |
| 856 | * interface routes. |
| 857 | */ |
| 858 | void |
| 859 | rip_ctlinput( |
| 860 | int cmd, |
| 861 | struct sockaddr *sa, |
| 862 | __unused void *vip, |
| 863 | __unused struct ifnet *ifp) |
| 864 | { |
| 865 | struct in_ifaddr *ia = NULL; |
| 866 | struct ifnet *iaifp = NULL; |
| 867 | int err = 0; |
| 868 | int flags, done = 0; |
| 869 | |
| 870 | switch (cmd) { |
| 871 | case PRC_IFDOWN: |
| 872 | lck_rw_lock_shared(lck: &in_ifaddr_rwlock); |
| 873 | for (ia = in_ifaddrhead.tqh_first; ia; |
| 874 | ia = ia->ia_link.tqe_next) { |
| 875 | IFA_LOCK(&ia->ia_ifa); |
| 876 | if (ia->ia_ifa.ifa_addr == sa && |
| 877 | (ia->ia_flags & IFA_ROUTE)) { |
| 878 | done = 1; |
| 879 | ifa_addref(ifa: &ia->ia_ifa); |
| 880 | IFA_UNLOCK(&ia->ia_ifa); |
| 881 | lck_rw_done(lck: &in_ifaddr_rwlock); |
| 882 | lck_mtx_lock(rnh_lock); |
| 883 | /* |
| 884 | * in_ifscrub kills the interface route. |
| 885 | */ |
| 886 | in_ifscrub(ia->ia_ifp, ia, 1); |
| 887 | /* |
| 888 | * in_ifadown gets rid of all the rest of |
| 889 | * the routes. This is not quite the right |
| 890 | * thing to do, but at least if we are running |
| 891 | * a routing process they will come back. |
| 892 | */ |
| 893 | in_ifadown(ifa: &ia->ia_ifa, 1); |
| 894 | lck_mtx_unlock(rnh_lock); |
| 895 | ifa_remref(ifa: &ia->ia_ifa); |
| 896 | break; |
| 897 | } |
| 898 | IFA_UNLOCK(&ia->ia_ifa); |
| 899 | } |
| 900 | if (!done) { |
| 901 | lck_rw_done(lck: &in_ifaddr_rwlock); |
| 902 | } |
| 903 | break; |
| 904 | |
| 905 | case PRC_IFUP: |
| 906 | lck_rw_lock_shared(lck: &in_ifaddr_rwlock); |
| 907 | for (ia = in_ifaddrhead.tqh_first; ia; |
| 908 | ia = ia->ia_link.tqe_next) { |
| 909 | IFA_LOCK(&ia->ia_ifa); |
| 910 | if (ia->ia_ifa.ifa_addr == sa) { |
| 911 | /* keep it locked */ |
| 912 | break; |
| 913 | } |
| 914 | IFA_UNLOCK(&ia->ia_ifa); |
| 915 | } |
| 916 | if (ia == NULL || (ia->ia_flags & IFA_ROUTE) || |
| 917 | (ia->ia_ifa.ifa_debug & IFD_NOTREADY)) { |
| 918 | if (ia != NULL) { |
| 919 | IFA_UNLOCK(&ia->ia_ifa); |
| 920 | } |
| 921 | lck_rw_done(lck: &in_ifaddr_rwlock); |
| 922 | return; |
| 923 | } |
| 924 | ifa_addref(ifa: &ia->ia_ifa); |
| 925 | IFA_UNLOCK(&ia->ia_ifa); |
| 926 | lck_rw_done(lck: &in_ifaddr_rwlock); |
| 927 | |
| 928 | flags = RTF_UP; |
| 929 | iaifp = ia->ia_ifa.ifa_ifp; |
| 930 | |
| 931 | if ((iaifp->if_flags & IFF_LOOPBACK) |
| 932 | || (iaifp->if_flags & IFF_POINTOPOINT)) { |
| 933 | flags |= RTF_HOST; |
| 934 | } |
| 935 | |
| 936 | err = rtinit(&ia->ia_ifa, RTM_ADD, flags); |
| 937 | if (err == 0) { |
| 938 | IFA_LOCK_SPIN(&ia->ia_ifa); |
| 939 | ia->ia_flags |= IFA_ROUTE; |
| 940 | IFA_UNLOCK(&ia->ia_ifa); |
| 941 | } |
| 942 | ifa_remref(ifa: &ia->ia_ifa); |
| 943 | break; |
| 944 | } |
| 945 | } |
| 946 | |
| 947 | u_int32_t rip_sendspace = RIPSNDQ; |
| 948 | u_int32_t rip_recvspace = RIPRCVQ; |
| 949 | |
| 950 | SYSCTL_INT(_net_inet_raw, OID_AUTO, maxdgram, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 951 | &rip_sendspace, 0, "Maximum outgoing raw IP datagram size" ); |
| 952 | SYSCTL_INT(_net_inet_raw, OID_AUTO, recvspace, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 953 | &rip_recvspace, 0, "Maximum incoming raw IP datagram size" ); |
| 954 | SYSCTL_UINT(_net_inet_raw, OID_AUTO, pcbcount, CTLFLAG_RD | CTLFLAG_LOCKED, |
| 955 | &ripcbinfo.ipi_count, 0, "Number of active PCBs" ); |
| 956 | |
| 957 | static int |
| 958 | rip_attach(struct socket *so, int proto, struct proc *p) |
| 959 | { |
| 960 | struct inpcb *inp; |
| 961 | int error; |
| 962 | |
| 963 | inp = sotoinpcb(so); |
| 964 | if (inp) { |
| 965 | panic("rip_attach" ); |
| 966 | } |
| 967 | if ((so->so_state & SS_PRIV) == 0) { |
| 968 | return EPERM; |
| 969 | } |
| 970 | if (proto > UINT8_MAX) { |
| 971 | return EINVAL; |
| 972 | } |
| 973 | |
| 974 | error = soreserve(so, sndcc: rip_sendspace, rcvcc: rip_recvspace); |
| 975 | if (error) { |
| 976 | return error; |
| 977 | } |
| 978 | error = in_pcballoc(so, &ripcbinfo, p); |
| 979 | if (error) { |
| 980 | return error; |
| 981 | } |
| 982 | inp = (struct inpcb *)so->so_pcb; |
| 983 | inp->inp_vflag |= INP_IPV4; |
| 984 | VERIFY(proto <= UINT8_MAX); |
| 985 | inp->inp_ip_p = (u_char)proto; |
| 986 | inp->inp_ip_ttl = (u_char)ip_defttl; |
| 987 | return 0; |
| 988 | } |
| 989 | |
| 990 | __private_extern__ int |
| 991 | rip_detach(struct socket *so) |
| 992 | { |
| 993 | struct inpcb *inp; |
| 994 | |
| 995 | inp = sotoinpcb(so); |
| 996 | if (inp == 0) { |
| 997 | panic("rip_detach" ); |
| 998 | } |
| 999 | in_pcbdetach(inp); |
| 1000 | return 0; |
| 1001 | } |
| 1002 | |
| 1003 | __private_extern__ int |
| 1004 | rip_abort(struct socket *so) |
| 1005 | { |
| 1006 | soisdisconnected(so); |
| 1007 | return rip_detach(so); |
| 1008 | } |
| 1009 | |
| 1010 | __private_extern__ int |
| 1011 | rip_disconnect(struct socket *so) |
| 1012 | { |
| 1013 | if ((so->so_state & SS_ISCONNECTED) == 0) { |
| 1014 | return ENOTCONN; |
| 1015 | } |
| 1016 | return rip_abort(so); |
| 1017 | } |
| 1018 | |
| 1019 | __private_extern__ int |
| 1020 | rip_bind(struct socket *so, struct sockaddr *nam, struct proc *p) |
| 1021 | { |
| 1022 | #pragma unused(p) |
| 1023 | struct inpcb *inp = sotoinpcb(so); |
| 1024 | struct sockaddr_in sin; |
| 1025 | struct ifaddr *ifa = NULL; |
| 1026 | struct ifnet *outif = NULL; |
| 1027 | |
| 1028 | if (inp == NULL |
| 1029 | #if NECP |
| 1030 | || (necp_socket_should_use_flow_divert(inp)) |
| 1031 | #endif /* NECP */ |
| 1032 | ) { |
| 1033 | return inp == NULL ? EINVAL : EPROTOTYPE; |
| 1034 | } |
| 1035 | |
| 1036 | if (nam->sa_len != sizeof(struct sockaddr_in)) { |
| 1037 | return EINVAL; |
| 1038 | } |
| 1039 | |
| 1040 | /* Sanitized local copy for interface address searches */ |
| 1041 | bzero(s: &sin, n: sizeof(sin)); |
| 1042 | sin.sin_family = AF_INET; |
| 1043 | sin.sin_len = sizeof(struct sockaddr_in); |
| 1044 | sin.sin_addr.s_addr = SIN(nam)->sin_addr.s_addr; |
| 1045 | |
| 1046 | if (TAILQ_EMPTY(&ifnet_head) || |
| 1047 | (sin.sin_family != AF_INET && sin.sin_family != AF_IMPLINK) || |
| 1048 | (sin.sin_addr.s_addr && (ifa = ifa_ifwithaddr(SA(&sin))) == 0)) { |
| 1049 | return EADDRNOTAVAIL; |
| 1050 | } else if (ifa) { |
| 1051 | /* |
| 1052 | * Opportunistically determine the outbound |
| 1053 | * interface that may be used; this may not |
| 1054 | * hold true if we end up using a route |
| 1055 | * going over a different interface, e.g. |
| 1056 | * when sending to a local address. This |
| 1057 | * will get updated again after sending. |
| 1058 | */ |
| 1059 | IFA_LOCK(ifa); |
| 1060 | outif = ifa->ifa_ifp; |
| 1061 | IFA_UNLOCK(ifa); |
| 1062 | ifa_remref(ifa); |
| 1063 | } |
| 1064 | inp->inp_laddr = sin.sin_addr; |
| 1065 | inp->inp_last_outifp = outif; |
| 1066 | |
| 1067 | return 0; |
| 1068 | } |
| 1069 | |
| 1070 | __private_extern__ int |
| 1071 | rip_connect(struct socket *so, struct sockaddr *nam, __unused struct proc *p) |
| 1072 | { |
| 1073 | struct inpcb *inp = sotoinpcb(so); |
| 1074 | struct sockaddr_in *addr = (struct sockaddr_in *)(void *)nam; |
| 1075 | |
| 1076 | if (inp == NULL |
| 1077 | #if NECP |
| 1078 | || (necp_socket_should_use_flow_divert(inp)) |
| 1079 | #endif /* NECP */ |
| 1080 | ) { |
| 1081 | return inp == NULL ? EINVAL : EPROTOTYPE; |
| 1082 | } |
| 1083 | if (nam->sa_len != sizeof(*addr)) { |
| 1084 | return EINVAL; |
| 1085 | } |
| 1086 | if (TAILQ_EMPTY(&ifnet_head)) { |
| 1087 | return EADDRNOTAVAIL; |
| 1088 | } |
| 1089 | if ((addr->sin_family != AF_INET) && |
| 1090 | (addr->sin_family != AF_IMPLINK)) { |
| 1091 | return EAFNOSUPPORT; |
| 1092 | } |
| 1093 | |
| 1094 | if (!(so->so_flags1 & SOF1_CONNECT_COUNTED)) { |
| 1095 | so->so_flags1 |= SOF1_CONNECT_COUNTED; |
| 1096 | INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_connected); |
| 1097 | } |
| 1098 | |
| 1099 | inp->inp_faddr = addr->sin_addr; |
| 1100 | soisconnected(so); |
| 1101 | |
| 1102 | return 0; |
| 1103 | } |
| 1104 | |
| 1105 | __private_extern__ int |
| 1106 | rip_shutdown(struct socket *so) |
| 1107 | { |
| 1108 | socantsendmore(so); |
| 1109 | return 0; |
| 1110 | } |
| 1111 | |
| 1112 | __private_extern__ int |
| 1113 | rip_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, |
| 1114 | struct mbuf *control, struct proc *p) |
| 1115 | { |
| 1116 | #pragma unused(flags, p) |
| 1117 | struct inpcb *inp = sotoinpcb(so); |
| 1118 | u_int32_t dst = INADDR_ANY; |
| 1119 | int error = 0; |
| 1120 | |
| 1121 | if (inp == NULL |
| 1122 | #if NECP |
| 1123 | || (necp_socket_should_use_flow_divert(inp) && (error = EPROTOTYPE)) |
| 1124 | #endif /* NECP */ |
| 1125 | ) { |
| 1126 | if (inp == NULL) { |
| 1127 | error = EINVAL; |
| 1128 | } else { |
| 1129 | error = EPROTOTYPE; |
| 1130 | } |
| 1131 | goto bad; |
| 1132 | } |
| 1133 | |
| 1134 | if (nam != NULL) { |
| 1135 | dst = ((struct sockaddr_in *)(void *)nam)->sin_addr.s_addr; |
| 1136 | } |
| 1137 | return rip_output(m, so, dst, control); |
| 1138 | |
| 1139 | bad: |
| 1140 | VERIFY(error != 0); |
| 1141 | |
| 1142 | if (m != NULL) { |
| 1143 | m_freem(m); |
| 1144 | } |
| 1145 | if (control != NULL) { |
| 1146 | m_freem(control); |
| 1147 | } |
| 1148 | |
| 1149 | return error; |
| 1150 | } |
| 1151 | |
| 1152 | /* note: rip_unlock is called from different protos instead of the generic socket_unlock, |
| 1153 | * it will handle the socket dealloc on last reference |
| 1154 | * */ |
| 1155 | int |
| 1156 | rip_unlock(struct socket *so, int refcount, void *debug) |
| 1157 | { |
| 1158 | void *lr_saved; |
| 1159 | struct inpcb *inp = sotoinpcb(so); |
| 1160 | |
| 1161 | if (debug == NULL) { |
| 1162 | lr_saved = __builtin_return_address(0); |
| 1163 | } else { |
| 1164 | lr_saved = debug; |
| 1165 | } |
| 1166 | |
| 1167 | if (refcount) { |
| 1168 | if (so->so_usecount <= 0) { |
| 1169 | panic("rip_unlock: bad refoucnt so=%p val=%x lrh= %s" , |
| 1170 | so, so->so_usecount, solockhistory_nr(so)); |
| 1171 | /* NOTREACHED */ |
| 1172 | } |
| 1173 | so->so_usecount--; |
| 1174 | if (so->so_usecount == 0 && (inp->inp_wantcnt == WNT_STOPUSING)) { |
| 1175 | /* cleanup after last reference */ |
| 1176 | lck_mtx_unlock(lck: so->so_proto->pr_domain->dom_mtx); |
| 1177 | lck_rw_lock_exclusive(lck: &ripcbinfo.ipi_lock); |
| 1178 | if (inp->inp_state != INPCB_STATE_DEAD) { |
| 1179 | if (SOCK_CHECK_DOM(so, PF_INET6)) { |
| 1180 | in6_pcbdetach(inp); |
| 1181 | } else { |
| 1182 | in_pcbdetach(inp); |
| 1183 | } |
| 1184 | } |
| 1185 | in_pcbdispose(inp); |
| 1186 | lck_rw_done(lck: &ripcbinfo.ipi_lock); |
| 1187 | return 0; |
| 1188 | } |
| 1189 | } |
| 1190 | so->unlock_lr[so->next_unlock_lr] = lr_saved; |
| 1191 | so->next_unlock_lr = (so->next_unlock_lr + 1) % SO_LCKDBG_MAX; |
| 1192 | lck_mtx_unlock(lck: so->so_proto->pr_domain->dom_mtx); |
| 1193 | return 0; |
| 1194 | } |
| 1195 | |
| 1196 | static int |
| 1197 | rip_pcblist SYSCTL_HANDLER_ARGS |
| 1198 | { |
| 1199 | #pragma unused(oidp, arg1, arg2) |
| 1200 | int error, i, n, sz; |
| 1201 | struct inpcb *inp, **inp_list; |
| 1202 | inp_gen_t gencnt; |
| 1203 | struct xinpgen xig; |
| 1204 | |
| 1205 | /* |
| 1206 | * The process of preparing the TCB list is too time-consuming and |
| 1207 | * resource-intensive to repeat twice on every request. |
| 1208 | */ |
| 1209 | lck_rw_lock_exclusive(lck: &ripcbinfo.ipi_lock); |
| 1210 | if (req->oldptr == USER_ADDR_NULL) { |
| 1211 | n = ripcbinfo.ipi_count; |
| 1212 | req->oldidx = 2 * (sizeof xig) |
| 1213 | + (n + n / 8) * sizeof(struct xinpcb); |
| 1214 | lck_rw_done(lck: &ripcbinfo.ipi_lock); |
| 1215 | return 0; |
| 1216 | } |
| 1217 | |
| 1218 | if (req->newptr != USER_ADDR_NULL) { |
| 1219 | lck_rw_done(lck: &ripcbinfo.ipi_lock); |
| 1220 | return EPERM; |
| 1221 | } |
| 1222 | |
| 1223 | /* |
| 1224 | * OK, now we're committed to doing something. |
| 1225 | */ |
| 1226 | gencnt = ripcbinfo.ipi_gencnt; |
| 1227 | sz = n = ripcbinfo.ipi_count; |
| 1228 | |
| 1229 | bzero(s: &xig, n: sizeof(xig)); |
| 1230 | xig.xig_len = sizeof xig; |
| 1231 | xig.xig_count = n; |
| 1232 | xig.xig_gen = gencnt; |
| 1233 | xig.xig_sogen = so_gencnt; |
| 1234 | error = SYSCTL_OUT(req, &xig, sizeof xig); |
| 1235 | if (error) { |
| 1236 | lck_rw_done(lck: &ripcbinfo.ipi_lock); |
| 1237 | return error; |
| 1238 | } |
| 1239 | /* |
| 1240 | * We are done if there is no pcb |
| 1241 | */ |
| 1242 | if (n == 0) { |
| 1243 | lck_rw_done(lck: &ripcbinfo.ipi_lock); |
| 1244 | return 0; |
| 1245 | } |
| 1246 | |
| 1247 | inp_list = kalloc_type(struct inpcb *, n, Z_WAITOK); |
| 1248 | if (inp_list == NULL) { |
| 1249 | lck_rw_done(lck: &ripcbinfo.ipi_lock); |
| 1250 | return ENOMEM; |
| 1251 | } |
| 1252 | |
| 1253 | for (inp = ripcbinfo.ipi_listhead->lh_first, i = 0; inp && i < n; |
| 1254 | inp = inp->inp_list.le_next) { |
| 1255 | if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) { |
| 1256 | inp_list[i++] = inp; |
| 1257 | } |
| 1258 | } |
| 1259 | n = i; |
| 1260 | |
| 1261 | error = 0; |
| 1262 | for (i = 0; i < n; i++) { |
| 1263 | inp = inp_list[i]; |
| 1264 | if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) { |
| 1265 | struct xinpcb xi; |
| 1266 | |
| 1267 | bzero(s: &xi, n: sizeof(xi)); |
| 1268 | xi.xi_len = sizeof xi; |
| 1269 | /* XXX should avoid extra copy */ |
| 1270 | inpcb_to_compat(inp, &xi.xi_inp); |
| 1271 | if (inp->inp_socket) { |
| 1272 | sotoxsocket(so: inp->inp_socket, xso: &xi.xi_socket); |
| 1273 | } |
| 1274 | error = SYSCTL_OUT(req, &xi, sizeof xi); |
| 1275 | } |
| 1276 | } |
| 1277 | if (!error) { |
| 1278 | /* |
| 1279 | * Give the user an updated idea of our state. |
| 1280 | * If the generation differs from what we told |
| 1281 | * her before, she knows that something happened |
| 1282 | * while we were processing this request, and it |
| 1283 | * might be necessary to retry. |
| 1284 | */ |
| 1285 | bzero(s: &xig, n: sizeof(xig)); |
| 1286 | xig.xig_len = sizeof xig; |
| 1287 | xig.xig_gen = ripcbinfo.ipi_gencnt; |
| 1288 | xig.xig_sogen = so_gencnt; |
| 1289 | xig.xig_count = ripcbinfo.ipi_count; |
| 1290 | error = SYSCTL_OUT(req, &xig, sizeof xig); |
| 1291 | } |
| 1292 | |
| 1293 | lck_rw_done(lck: &ripcbinfo.ipi_lock); |
| 1294 | kfree_type(struct inpcb *, sz, inp_list); |
| 1295 | return error; |
| 1296 | } |
| 1297 | |
| 1298 | SYSCTL_PROC(_net_inet_raw, OID_AUTO /*XXX*/, pcblist, |
| 1299 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, |
| 1300 | rip_pcblist, "S,xinpcb" , "List of active raw IP sockets" ); |
| 1301 | |
| 1302 | #if XNU_TARGET_OS_OSX |
| 1303 | |
| 1304 | static int |
| 1305 | rip_pcblist64 SYSCTL_HANDLER_ARGS |
| 1306 | { |
| 1307 | #pragma unused(oidp, arg1, arg2) |
| 1308 | int error, i, n, sz; |
| 1309 | struct inpcb *inp, **inp_list; |
| 1310 | inp_gen_t gencnt; |
| 1311 | struct xinpgen xig; |
| 1312 | |
| 1313 | /* |
| 1314 | * The process of preparing the TCB list is too time-consuming and |
| 1315 | * resource-intensive to repeat twice on every request. |
| 1316 | */ |
| 1317 | lck_rw_lock_exclusive(lck: &ripcbinfo.ipi_lock); |
| 1318 | if (req->oldptr == USER_ADDR_NULL) { |
| 1319 | n = ripcbinfo.ipi_count; |
| 1320 | req->oldidx = 2 * (sizeof xig) |
| 1321 | + (n + n / 8) * sizeof(struct xinpcb64); |
| 1322 | lck_rw_done(lck: &ripcbinfo.ipi_lock); |
| 1323 | return 0; |
| 1324 | } |
| 1325 | |
| 1326 | if (req->newptr != USER_ADDR_NULL) { |
| 1327 | lck_rw_done(lck: &ripcbinfo.ipi_lock); |
| 1328 | return EPERM; |
| 1329 | } |
| 1330 | |
| 1331 | /* |
| 1332 | * OK, now we're committed to doing something. |
| 1333 | */ |
| 1334 | gencnt = ripcbinfo.ipi_gencnt; |
| 1335 | sz = n = ripcbinfo.ipi_count; |
| 1336 | |
| 1337 | bzero(s: &xig, n: sizeof(xig)); |
| 1338 | xig.xig_len = sizeof xig; |
| 1339 | xig.xig_count = n; |
| 1340 | xig.xig_gen = gencnt; |
| 1341 | xig.xig_sogen = so_gencnt; |
| 1342 | error = SYSCTL_OUT(req, &xig, sizeof xig); |
| 1343 | if (error) { |
| 1344 | lck_rw_done(lck: &ripcbinfo.ipi_lock); |
| 1345 | return error; |
| 1346 | } |
| 1347 | /* |
| 1348 | * We are done if there is no pcb |
| 1349 | */ |
| 1350 | if (n == 0) { |
| 1351 | lck_rw_done(lck: &ripcbinfo.ipi_lock); |
| 1352 | return 0; |
| 1353 | } |
| 1354 | |
| 1355 | inp_list = kalloc_type(struct inpcb *, n, Z_WAITOK); |
| 1356 | if (inp_list == NULL) { |
| 1357 | lck_rw_done(lck: &ripcbinfo.ipi_lock); |
| 1358 | return ENOMEM; |
| 1359 | } |
| 1360 | |
| 1361 | for (inp = ripcbinfo.ipi_listhead->lh_first, i = 0; inp && i < n; |
| 1362 | inp = inp->inp_list.le_next) { |
| 1363 | if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) { |
| 1364 | inp_list[i++] = inp; |
| 1365 | } |
| 1366 | } |
| 1367 | n = i; |
| 1368 | |
| 1369 | error = 0; |
| 1370 | for (i = 0; i < n; i++) { |
| 1371 | inp = inp_list[i]; |
| 1372 | if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) { |
| 1373 | struct xinpcb64 xi; |
| 1374 | |
| 1375 | bzero(s: &xi, n: sizeof(xi)); |
| 1376 | xi.xi_len = sizeof xi; |
| 1377 | inpcb_to_xinpcb64(inp, &xi); |
| 1378 | if (inp->inp_socket) { |
| 1379 | sotoxsocket64(so: inp->inp_socket, xso: &xi.xi_socket); |
| 1380 | } |
| 1381 | error = SYSCTL_OUT(req, &xi, sizeof xi); |
| 1382 | } |
| 1383 | } |
| 1384 | if (!error) { |
| 1385 | /* |
| 1386 | * Give the user an updated idea of our state. |
| 1387 | * If the generation differs from what we told |
| 1388 | * her before, she knows that something happened |
| 1389 | * while we were processing this request, and it |
| 1390 | * might be necessary to retry. |
| 1391 | */ |
| 1392 | bzero(s: &xig, n: sizeof(xig)); |
| 1393 | xig.xig_len = sizeof xig; |
| 1394 | xig.xig_gen = ripcbinfo.ipi_gencnt; |
| 1395 | xig.xig_sogen = so_gencnt; |
| 1396 | xig.xig_count = ripcbinfo.ipi_count; |
| 1397 | error = SYSCTL_OUT(req, &xig, sizeof xig); |
| 1398 | } |
| 1399 | |
| 1400 | lck_rw_done(lck: &ripcbinfo.ipi_lock); |
| 1401 | kfree_type(struct inpcb *, sz, inp_list); |
| 1402 | return error; |
| 1403 | } |
| 1404 | |
| 1405 | SYSCTL_PROC(_net_inet_raw, OID_AUTO, pcblist64, |
| 1406 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, |
| 1407 | rip_pcblist64, "S,xinpcb64" , "List of active raw IP sockets" ); |
| 1408 | |
| 1409 | #endif /* XNU_TARGET_OS_OSX */ |
| 1410 | |
| 1411 | |
| 1412 | static int |
| 1413 | rip_pcblist_n SYSCTL_HANDLER_ARGS |
| 1414 | { |
| 1415 | #pragma unused(oidp, arg1, arg2) |
| 1416 | int error = 0; |
| 1417 | |
| 1418 | error = get_pcblist_n(IPPROTO_IP, req, &ripcbinfo); |
| 1419 | |
| 1420 | return error; |
| 1421 | } |
| 1422 | |
| 1423 | SYSCTL_PROC(_net_inet_raw, OID_AUTO, pcblist_n, |
| 1424 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, |
| 1425 | rip_pcblist_n, "S,xinpcb_n" , "List of active raw IP sockets" ); |
| 1426 | |
| 1427 | struct pr_usrreqs rip_usrreqs = { |
| 1428 | .pru_abort = rip_abort, |
| 1429 | .pru_attach = rip_attach, |
| 1430 | .pru_bind = rip_bind, |
| 1431 | .pru_connect = rip_connect, |
| 1432 | .pru_control = in_control, |
| 1433 | .pru_detach = rip_detach, |
| 1434 | .pru_disconnect = rip_disconnect, |
| 1435 | .pru_peeraddr = in_getpeeraddr, |
| 1436 | .pru_send = rip_send, |
| 1437 | .pru_shutdown = rip_shutdown, |
| 1438 | .pru_sockaddr = in_getsockaddr, |
| 1439 | .pru_sosend = sosend, |
| 1440 | .pru_soreceive = soreceive, |
| 1441 | }; |
| 1442 | /* DSEP Review Done pl-20051213-v02 @3253 */ |
| 1443 | |