| 1 | /* |
| 2 | * Copyright (c) 2018-2020 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | /* |
| 30 | * Copyright (c) 2001 Daniel Hartmeier |
| 31 | * Copyright (c) 2002 - 2013 Henning Brauer |
| 32 | * NAT64 - Copyright (c) 2010 Viagenie Inc. (http://www.viagenie.ca) |
| 33 | * All rights reserved. |
| 34 | * |
| 35 | * Redistribution and use in source and binary forms, with or without |
| 36 | * modification, are permitted provided that the following conditions |
| 37 | * are met: |
| 38 | * |
| 39 | * - Redistributions of source code must retain the above copyright |
| 40 | * notice, this list of conditions and the following disclaimer. |
| 41 | * - Redistributions in binary form must reproduce the above |
| 42 | * copyright notice, this list of conditions and the following |
| 43 | * disclaimer in the documentation and/or other materials provided |
| 44 | * with the distribution. |
| 45 | * |
| 46 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 47 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 48 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| 49 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| 50 | * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 51 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| 52 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 53 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| 54 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 55 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
| 56 | * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 57 | * POSSIBILITY OF SUCH DAMAGE. |
| 58 | * |
| 59 | * Effort sponsored in part by the Defense Advanced Research Projects |
| 60 | * Agency (DARPA) and Air Force Research Laboratory, Air Force |
| 61 | * Materiel Command, USAF, under agreement number F30602-01-2-0537. |
| 62 | * |
| 63 | */ |
| 64 | #include <sys/param.h> |
| 65 | #include <sys/types.h> |
| 66 | #include <sys/mbuf.h> |
| 67 | |
| 68 | #include <net/if.h> |
| 69 | #include <net/if_types.h> |
| 70 | #include <net/dlil.h> |
| 71 | #include <net/nat464_utils.h> |
| 72 | #include <net/nwk_wq.h> |
| 73 | |
| 74 | #include <netinet/in.h> |
| 75 | #include <netinet/in_var.h> |
| 76 | #include <netinet/in_systm.h> |
| 77 | #include <netinet/ip.h> |
| 78 | #include <netinet/ip6.h> |
| 79 | #include <netinet/ip_var.h> |
| 80 | #include <netinet/ip_icmp.h> |
| 81 | #include <netinet/in_pcb.h> |
| 82 | #include <netinet/icmp_var.h> |
| 83 | #include <netinet/icmp6.h> |
| 84 | #include <netinet/tcp.h> |
| 85 | #include <netinet/udp.h> |
| 86 | #include <netinet/udp_var.h> |
| 87 | #include <os/log.h> |
| 88 | |
| 89 | int clat_debug = 0; |
| 90 | |
| 91 | os_log_t nat_log_handle; |
| 92 | |
| 93 | static void |
| 94 | nat464_addr_cksum_fixup(uint16_t *, struct nat464_addr *, struct nat464_addr *, |
| 95 | protocol_family_t, protocol_family_t, uint8_t, boolean_t); |
| 96 | |
| 97 | /* Synthesize ipv6 from ipv4 */ |
| 98 | int |
| 99 | nat464_synthesize_ipv6(ifnet_t ifp, const struct in_addr *addrv4, struct in6_addr *addr) |
| 100 | { |
| 101 | static const struct in6_addr well_known_prefix = { |
| 102 | .__u6_addr.__u6_addr8 = {0x00, 0x64, 0xff, 0x9b, 0x00, 0x00, |
| 103 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 104 | 0x00, 0x00, 0x00, 0x00}, |
| 105 | }; |
| 106 | |
| 107 | struct ipv6_prefix nat64prefixes[NAT64_MAX_NUM_PREFIXES]; |
| 108 | int error = 0, i = 0; |
| 109 | /* Below call is not optimized as it creates a copy of prefixes */ |
| 110 | if ((error = ifnet_get_nat64prefix(ifp, nat64prefixes)) != 0) { |
| 111 | return error; |
| 112 | } |
| 113 | |
| 114 | for (i = 0; i < NAT64_MAX_NUM_PREFIXES; i++) { |
| 115 | if (nat64prefixes[i].prefix_len != 0) { |
| 116 | break; |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | VERIFY(i < NAT64_MAX_NUM_PREFIXES); |
| 121 | |
| 122 | struct in6_addr prefix = nat64prefixes[i].ipv6_prefix; |
| 123 | int prefix_len = nat64prefixes[i].prefix_len; |
| 124 | |
| 125 | char *ptrv4 = __DECONST(char *, addrv4); |
| 126 | char *ptr = __DECONST(char *, addr); |
| 127 | |
| 128 | if (IN_ZERONET(ntohl(addrv4->s_addr)) || // 0.0.0.0/8 Source hosts on local network |
| 129 | IN_LOOPBACK(ntohl(addrv4->s_addr)) || // 127.0.0.0/8 Loopback |
| 130 | IN_LINKLOCAL(ntohl(addrv4->s_addr)) || // 169.254.0.0/16 Link Local |
| 131 | IN_DS_LITE(ntohl(addrv4->s_addr)) || // 192.0.0.0/29 DS-Lite |
| 132 | IN_6TO4_RELAY_ANYCAST(ntohl(addrv4->s_addr)) || // 192.88.99.0/24 6to4 Relay Anycast |
| 133 | IN_MULTICAST(ntohl(addrv4->s_addr)) || // 224.0.0.0/4 Multicast |
| 134 | INADDR_BROADCAST == addrv4->s_addr) { // 255.255.255.255/32 Limited Broadcast |
| 135 | return -1; |
| 136 | } |
| 137 | |
| 138 | /* Check for the well-known prefix */ |
| 139 | if (prefix_len == NAT64_PREFIX_LEN_96 && |
| 140 | IN6_ARE_ADDR_EQUAL(&prefix, &well_known_prefix)) { // https://tools.ietf.org/html/rfc6052#section-3.1 |
| 141 | if (IN_PRIVATE(ntohl(addrv4->s_addr)) || // 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16 Private-Use |
| 142 | IN_SHARED_ADDRESS_SPACE(ntohl(addrv4->s_addr))) { // 100.64.0.0/10 Shared Address Space |
| 143 | return -1; |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | memcpy(dst: ptr, src: (char *)&prefix, n: prefix_len); |
| 148 | |
| 149 | switch (prefix_len) { |
| 150 | case NAT64_PREFIX_LEN_96: |
| 151 | memcpy(dst: ptr + 12, src: ptrv4, n: 4); |
| 152 | break; |
| 153 | case NAT64_PREFIX_LEN_64: |
| 154 | memcpy(dst: ptr + 9, src: ptrv4, n: 4); |
| 155 | break; |
| 156 | case NAT64_PREFIX_LEN_56: |
| 157 | memcpy(dst: ptr + 7, src: ptrv4, n: 1); |
| 158 | memcpy(dst: ptr + 9, src: ptrv4 + 1, n: 3); |
| 159 | break; |
| 160 | case NAT64_PREFIX_LEN_48: |
| 161 | memcpy(dst: ptr + 6, src: ptrv4, n: 2); |
| 162 | memcpy(dst: ptr + 9, src: ptrv4 + 2, n: 2); |
| 163 | break; |
| 164 | case NAT64_PREFIX_LEN_40: |
| 165 | memcpy(dst: ptr + 5, src: ptrv4, n: 3); |
| 166 | memcpy(dst: ptr + 9, src: ptrv4 + 3, n: 1); |
| 167 | break; |
| 168 | case NAT64_PREFIX_LEN_32: |
| 169 | memcpy(dst: ptr + 4, src: ptrv4, n: 4); |
| 170 | break; |
| 171 | default: |
| 172 | panic("NAT64-prefix len is wrong: %u" , prefix_len); |
| 173 | } |
| 174 | |
| 175 | if (clat_debug) { |
| 176 | char buf[MAX_IPv6_STR_LEN]; |
| 177 | clat_log2((LOG_DEBUG, "%s synthesized %s\n" , __func__, |
| 178 | inet_ntop(AF_INET6, (void *)addr, buf, sizeof(buf)))); |
| 179 | } |
| 180 | |
| 181 | return error; |
| 182 | } |
| 183 | |
| 184 | /* Synthesize ipv4 from ipv6 */ |
| 185 | int |
| 186 | nat464_synthesize_ipv4(ifnet_t ifp, const struct in6_addr *addr, struct in_addr *addrv4) |
| 187 | { |
| 188 | struct ipv6_prefix nat64prefixes[NAT64_MAX_NUM_PREFIXES]; |
| 189 | int error = 0, i = 0; |
| 190 | |
| 191 | /* Below call is not optimized as it creates a copy of prefixes */ |
| 192 | if ((error = ifnet_get_nat64prefix(ifp, nat64prefixes)) != 0) { |
| 193 | return error; |
| 194 | } |
| 195 | |
| 196 | for (i = 0; i < NAT64_MAX_NUM_PREFIXES; i++) { |
| 197 | if (nat64prefixes[i].prefix_len != 0) { |
| 198 | break; |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | VERIFY(i < NAT64_MAX_NUM_PREFIXES); |
| 203 | |
| 204 | struct in6_addr prefix = nat64prefixes[i].ipv6_prefix; |
| 205 | int prefix_len = nat64prefixes[i].prefix_len; |
| 206 | |
| 207 | char *ptrv4 = __DECONST(void *, addrv4); |
| 208 | char *ptr = __DECONST(void *, addr); |
| 209 | |
| 210 | if (memcmp(s1: addr, s2: &prefix, n: prefix_len) != 0) { |
| 211 | return -1; |
| 212 | } |
| 213 | |
| 214 | switch (prefix_len) { |
| 215 | case NAT64_PREFIX_LEN_96: |
| 216 | memcpy(dst: ptrv4, src: ptr + 12, n: 4); |
| 217 | break; |
| 218 | case NAT64_PREFIX_LEN_64: |
| 219 | memcpy(dst: ptrv4, src: ptr + 9, n: 4); |
| 220 | break; |
| 221 | case NAT64_PREFIX_LEN_56: |
| 222 | memcpy(dst: ptrv4, src: ptr + 7, n: 1); |
| 223 | memcpy(dst: ptrv4 + 1, src: ptr + 9, n: 3); |
| 224 | break; |
| 225 | case NAT64_PREFIX_LEN_48: |
| 226 | memcpy(dst: ptrv4, src: ptr + 6, n: 2); |
| 227 | memcpy(dst: ptrv4 + 2, src: ptr + 9, n: 2); |
| 228 | break; |
| 229 | case NAT64_PREFIX_LEN_40: |
| 230 | memcpy(dst: ptrv4, src: ptr + 5, n: 3); |
| 231 | memcpy(dst: ptrv4 + 3, src: ptr + 9, n: 1); |
| 232 | break; |
| 233 | case NAT64_PREFIX_LEN_32: |
| 234 | memcpy(dst: ptrv4, src: ptr + 4, n: 4); |
| 235 | break; |
| 236 | default: |
| 237 | panic("NAT64-prefix len is wrong: %u" , |
| 238 | prefix_len); |
| 239 | } |
| 240 | |
| 241 | if (clat_debug) { |
| 242 | char buf[MAX_IPv4_STR_LEN]; |
| 243 | clat_log2((LOG_DEBUG, "%s desynthesized to %s\n" , __func__, |
| 244 | inet_ntop(AF_INET, (void *)addrv4, buf, sizeof(buf)))); |
| 245 | } |
| 246 | return error; |
| 247 | } |
| 248 | |
| 249 | #define PTR_IP(field) ((int32_t)offsetof(struct ip, field)) |
| 250 | #define PTR_IP6(field) ((int32_t)offsetof(struct ip6_hdr, field)) |
| 251 | |
| 252 | /* |
| 253 | * Translate the ICMP header |
| 254 | */ |
| 255 | int |
| 256 | nat464_translate_icmp(int naf, void *arg) |
| 257 | { |
| 258 | struct icmp *icmp4; |
| 259 | struct icmp6_hdr *icmp6; |
| 260 | uint32_t mtu; |
| 261 | int32_t ptr = -1; |
| 262 | uint8_t type; |
| 263 | uint8_t code; |
| 264 | |
| 265 | switch (naf) { |
| 266 | case AF_INET: |
| 267 | icmp6 = arg; |
| 268 | type = icmp6->icmp6_type; |
| 269 | code = icmp6->icmp6_code; |
| 270 | mtu = ntohl(icmp6->icmp6_mtu); |
| 271 | |
| 272 | switch (type) { |
| 273 | case ICMP6_ECHO_REQUEST: |
| 274 | type = ICMP_ECHO; |
| 275 | break; |
| 276 | case ICMP6_ECHO_REPLY: |
| 277 | type = ICMP_ECHOREPLY; |
| 278 | break; |
| 279 | case ICMP6_DST_UNREACH: |
| 280 | type = ICMP_UNREACH; |
| 281 | switch (code) { |
| 282 | case ICMP6_DST_UNREACH_NOROUTE: |
| 283 | case ICMP6_DST_UNREACH_BEYONDSCOPE: |
| 284 | case ICMP6_DST_UNREACH_ADDR: |
| 285 | code = ICMP_UNREACH_HOST; |
| 286 | break; |
| 287 | case ICMP6_DST_UNREACH_ADMIN: |
| 288 | code = ICMP_UNREACH_HOST_PROHIB; |
| 289 | break; |
| 290 | case ICMP6_DST_UNREACH_NOPORT: |
| 291 | code = ICMP_UNREACH_PORT; |
| 292 | break; |
| 293 | default: |
| 294 | return -1; |
| 295 | } |
| 296 | break; |
| 297 | case ICMP6_PACKET_TOO_BIG: |
| 298 | type = ICMP_UNREACH; |
| 299 | code = ICMP_UNREACH_NEEDFRAG; |
| 300 | mtu -= 20; |
| 301 | break; |
| 302 | case ICMP6_TIME_EXCEEDED: |
| 303 | type = ICMP_TIMXCEED; |
| 304 | break; |
| 305 | case ICMP6_PARAM_PROB: |
| 306 | switch (code) { |
| 307 | case ICMP6_PARAMPROB_HEADER: |
| 308 | type = ICMP_PARAMPROB; |
| 309 | code = ICMP_PARAMPROB_ERRATPTR; |
| 310 | ptr = ntohl(icmp6->icmp6_pptr); |
| 311 | |
| 312 | if (ptr == PTR_IP6(ip6_vfc)) { |
| 313 | ; /* preserve */ |
| 314 | } else if (ptr == PTR_IP6(ip6_vfc) + 1) { |
| 315 | ptr = PTR_IP(ip_tos); |
| 316 | } else if (ptr == PTR_IP6(ip6_plen) || |
| 317 | ptr == PTR_IP6(ip6_plen) + 1) { |
| 318 | ptr = PTR_IP(ip_len); |
| 319 | } else if (ptr == PTR_IP6(ip6_nxt)) { |
| 320 | ptr = PTR_IP(ip_p); |
| 321 | } else if (ptr == PTR_IP6(ip6_hlim)) { |
| 322 | ptr = PTR_IP(ip_ttl); |
| 323 | } else if (ptr >= PTR_IP6(ip6_src) && |
| 324 | ptr < PTR_IP6(ip6_dst)) { |
| 325 | ptr = PTR_IP(ip_src); |
| 326 | } else if (ptr >= PTR_IP6(ip6_dst) && |
| 327 | ptr < (int32_t)sizeof(struct ip6_hdr)) { |
| 328 | ptr = PTR_IP(ip_dst); |
| 329 | } else { |
| 330 | return -1; |
| 331 | } |
| 332 | break; |
| 333 | case ICMP6_PARAMPROB_NEXTHEADER: |
| 334 | type = ICMP_UNREACH; |
| 335 | code = ICMP_UNREACH_PROTOCOL; |
| 336 | break; |
| 337 | default: |
| 338 | return -1; |
| 339 | } |
| 340 | break; |
| 341 | default: |
| 342 | return -1; |
| 343 | } |
| 344 | icmp6->icmp6_type = type; |
| 345 | icmp6->icmp6_code = code; |
| 346 | /* aligns well with a icmpv4 nextmtu */ |
| 347 | icmp6->icmp6_mtu = htonl(mtu); |
| 348 | /* icmpv4 pptr is a one most significant byte */ |
| 349 | if (ptr >= 0) { |
| 350 | icmp6->icmp6_pptr = htonl(ptr << 24); |
| 351 | } |
| 352 | break; |
| 353 | |
| 354 | case AF_INET6: |
| 355 | icmp4 = arg; |
| 356 | type = icmp4->icmp_type; |
| 357 | code = icmp4->icmp_code; |
| 358 | mtu = ntohs(icmp4->icmp_nextmtu); |
| 359 | |
| 360 | switch (type) { |
| 361 | case ICMP_ECHO: |
| 362 | type = ICMP6_ECHO_REQUEST; |
| 363 | break; |
| 364 | case ICMP_ECHOREPLY: |
| 365 | type = ICMP6_ECHO_REPLY; |
| 366 | break; |
| 367 | case ICMP_UNREACH: |
| 368 | type = ICMP6_DST_UNREACH; |
| 369 | switch (code) { |
| 370 | case ICMP_UNREACH_NET: |
| 371 | case ICMP_UNREACH_HOST: |
| 372 | case ICMP_UNREACH_NET_UNKNOWN: |
| 373 | case ICMP_UNREACH_HOST_UNKNOWN: |
| 374 | case ICMP_UNREACH_ISOLATED: |
| 375 | case ICMP_UNREACH_TOSNET: |
| 376 | case ICMP_UNREACH_TOSHOST: |
| 377 | code = ICMP6_DST_UNREACH_NOROUTE; |
| 378 | break; |
| 379 | case ICMP_UNREACH_PORT: |
| 380 | code = ICMP6_DST_UNREACH_NOPORT; |
| 381 | break; |
| 382 | case ICMP_UNREACH_NET_PROHIB: |
| 383 | case ICMP_UNREACH_HOST_PROHIB: |
| 384 | case ICMP_UNREACH_FILTER_PROHIB: |
| 385 | case ICMP_UNREACH_PRECEDENCE_CUTOFF: |
| 386 | code = ICMP6_DST_UNREACH_ADMIN; |
| 387 | break; |
| 388 | case ICMP_UNREACH_PROTOCOL: |
| 389 | type = ICMP6_PARAM_PROB; |
| 390 | code = ICMP6_PARAMPROB_NEXTHEADER; |
| 391 | ptr = offsetof(struct ip6_hdr, ip6_nxt); |
| 392 | break; |
| 393 | case ICMP_UNREACH_NEEDFRAG: |
| 394 | type = ICMP6_PACKET_TOO_BIG; |
| 395 | code = 0; |
| 396 | /* |
| 397 | * Make sure we don't overflow adjusting for |
| 398 | * translation overhead. |
| 399 | * If we do, just work with a lower mtu as is. |
| 400 | */ |
| 401 | if (mtu <= (UINT16_MAX - CLAT46_HDR_EXPANSION_OVERHD)) { |
| 402 | mtu += CLAT46_HDR_EXPANSION_OVERHD; |
| 403 | } |
| 404 | break; |
| 405 | default: |
| 406 | return -1; |
| 407 | } |
| 408 | break; |
| 409 | case ICMP_TIMXCEED: |
| 410 | type = ICMP6_TIME_EXCEEDED; |
| 411 | break; |
| 412 | case ICMP_PARAMPROB: |
| 413 | type = ICMP6_PARAM_PROB; |
| 414 | switch (code) { |
| 415 | case ICMP_PARAMPROB_ERRATPTR: |
| 416 | code = ICMP6_PARAMPROB_HEADER; |
| 417 | break; |
| 418 | case ICMP_PARAMPROB_LENGTH: |
| 419 | code = ICMP6_PARAMPROB_HEADER; |
| 420 | break; |
| 421 | default: |
| 422 | return -1; |
| 423 | } |
| 424 | |
| 425 | ptr = icmp4->icmp_pptr; |
| 426 | if (ptr == 0 || ptr == PTR_IP(ip_tos)) { |
| 427 | ; /* preserve */ |
| 428 | } else if (ptr == PTR_IP(ip_len) || |
| 429 | ptr == PTR_IP(ip_len) + 1) { |
| 430 | ptr = PTR_IP6(ip6_plen); |
| 431 | } else if (ptr == PTR_IP(ip_ttl)) { |
| 432 | ptr = PTR_IP6(ip6_hlim); |
| 433 | } else if (ptr == PTR_IP(ip_p)) { |
| 434 | ptr = PTR_IP6(ip6_nxt); |
| 435 | } else if (ptr >= PTR_IP(ip_src) && |
| 436 | ptr < PTR_IP(ip_dst)) { |
| 437 | ptr = PTR_IP6(ip6_src); |
| 438 | } else if (ptr >= PTR_IP(ip_dst) && |
| 439 | ptr < (int32_t)sizeof(struct ip)) { |
| 440 | ptr = PTR_IP6(ip6_dst); |
| 441 | } else { |
| 442 | return -1; |
| 443 | } |
| 444 | break; |
| 445 | default: |
| 446 | return -1; |
| 447 | } |
| 448 | icmp4->icmp_type = type; |
| 449 | icmp4->icmp_code = code; |
| 450 | icmp4->icmp_nextmtu = htons((uint16_t)mtu); |
| 451 | |
| 452 | if (ptr >= 0) { |
| 453 | icmp4->icmp_void = htonl(ptr); |
| 454 | } |
| 455 | break; |
| 456 | } |
| 457 | |
| 458 | return 0; |
| 459 | } |
| 460 | |
| 461 | /* |
| 462 | * @brief This routine is called to perform address family translation on the |
| 463 | * inner IP header (that may come as payload) of an ICMP(v4/v6) error |
| 464 | * response. |
| 465 | * |
| 466 | * @param pbuf Pointer to packet buffer |
| 467 | * @param off Points to end of ICMP header |
| 468 | * @param tot_len Pointer to total length of the outer IP header |
| 469 | * @param off2 Points to end of inner IP header |
| 470 | * @param proto2 Inner IP proto field |
| 471 | * @param ttl2 Inner IP ttl field |
| 472 | * @param tot_len2 Inner IP total length |
| 473 | * @param src Pointer to the generic v4/v6 src address |
| 474 | * @param dst Pointer to the generic v4/v6 dst address |
| 475 | * @param af Old protocol family |
| 476 | * @param naf New protocol family |
| 477 | * |
| 478 | * @return -1 on error and 0 on success |
| 479 | */ |
| 480 | int |
| 481 | nat464_translate_icmp_ip(pbuf_t *pbuf, uint16_t off, uint16_t *tot_len, uint16_t *off2, |
| 482 | uint8_t proto2, uint8_t ttl2, uint16_t tot_len2, struct nat464_addr *src, |
| 483 | struct nat464_addr *dst, protocol_family_t af, protocol_family_t naf) |
| 484 | { |
| 485 | struct ip *ip4 = NULL; |
| 486 | struct ip6_hdr *ip6 = NULL; |
| 487 | void *hdr = NULL; |
| 488 | int hlen = 0, olen = 0; |
| 489 | uint64_t ipid_salt = (uint64_t)pbuf_get_packet_buffer_address(pbuf); |
| 490 | |
| 491 | if (af == naf || (af != AF_INET && af != AF_INET6) || |
| 492 | (naf != AF_INET && naf != AF_INET6)) { |
| 493 | return -1; |
| 494 | } |
| 495 | |
| 496 | /* old header */ |
| 497 | olen = *off2 - off; |
| 498 | /* new header */ |
| 499 | hlen = naf == PF_INET ? sizeof(*ip4) : sizeof(*ip6); |
| 500 | |
| 501 | /* Modify the pbuf to accommodate the new header */ |
| 502 | hdr = pbuf_resize_segment(pbuf, off, olen, nlen: hlen); |
| 503 | if (hdr == NULL) { |
| 504 | return -1; |
| 505 | } |
| 506 | |
| 507 | /* translate inner ip/ip6 header */ |
| 508 | switch (naf) { |
| 509 | case AF_INET: |
| 510 | ip4 = hdr; |
| 511 | bzero(s: ip4, n: sizeof(*ip4)); |
| 512 | ip4->ip_v = IPVERSION; |
| 513 | ip4->ip_hl = sizeof(*ip4) >> 2; |
| 514 | ip4->ip_len = htons((uint16_t)(sizeof(*ip4) + tot_len2 - olen)); |
| 515 | ip4->ip_id = rfc6864 ? 0 : htons(ip_randomid(ipid_salt)); |
| 516 | ip4->ip_off = htons(IP_DF); |
| 517 | ip4->ip_ttl = ttl2; |
| 518 | if (proto2 == IPPROTO_ICMPV6) { |
| 519 | ip4->ip_p = IPPROTO_ICMP; |
| 520 | } else { |
| 521 | ip4->ip_p = proto2; |
| 522 | } |
| 523 | ip4->ip_src = src->natv4addr; |
| 524 | ip4->ip_dst = dst->natv4addr; |
| 525 | ip4->ip_sum = pbuf_inet_cksum(pbuf, 0, 0, ip4->ip_hl << 2); |
| 526 | |
| 527 | if (clat_debug) { |
| 528 | char buf[MAX_IPv4_STR_LEN]; |
| 529 | clat_log2((LOG_DEBUG, "%s translated to IPv4 (inner) " |
| 530 | "ip_len: %#x ip_p: %d ip_sum: %#x ip_src: %s ip_dst: %s \n" , |
| 531 | __func__, ntohs(ip4->ip_len), ip4->ip_p, ntohs(ip4->ip_sum), |
| 532 | inet_ntop(AF_INET, (void *)&ip4->ip_src, buf, sizeof(buf)), |
| 533 | inet_ntop(AF_INET, (void *)&ip4->ip_dst, buf, sizeof(buf)))); |
| 534 | } |
| 535 | break; |
| 536 | case AF_INET6: |
| 537 | ip6 = hdr; |
| 538 | bzero(s: ip6, n: sizeof(*ip6)); |
| 539 | ip6->ip6_vfc = IPV6_VERSION; |
| 540 | ip6->ip6_plen = htons((uint16_t)(tot_len2 - olen)); |
| 541 | if (proto2 == IPPROTO_ICMP) { |
| 542 | ip6->ip6_nxt = IPPROTO_ICMPV6; |
| 543 | } else { |
| 544 | ip6->ip6_nxt = proto2; |
| 545 | } |
| 546 | if (!ttl2 || ttl2 > IPV6_DEFHLIM) { |
| 547 | ip6->ip6_hlim = IPV6_DEFHLIM; |
| 548 | } else { |
| 549 | ip6->ip6_hlim = ttl2; |
| 550 | } |
| 551 | ip6->ip6_src = src->natv6addr; |
| 552 | ip6->ip6_dst = dst->natv6addr; |
| 553 | |
| 554 | if (clat_debug) { |
| 555 | char buf2[MAX_IPv6_STR_LEN]; |
| 556 | clat_log2((LOG_DEBUG, "%s translated to IPv6 (inner) " |
| 557 | "ip6_plen: %#x ip6_nxt: %d ip6_src: %s ip6_dst: %s \n" , |
| 558 | __func__, ntohs(ip6->ip6_plen), ip6->ip6_nxt, |
| 559 | inet_ntop(AF_INET6, (void *)&ip6->ip6_src, buf2, sizeof(buf2)), |
| 560 | inet_ntop(AF_INET6, (void *)&ip6->ip6_dst, buf2, sizeof(buf2)))); |
| 561 | } |
| 562 | break; |
| 563 | } |
| 564 | |
| 565 | /* adjust payload offset and total packet length */ |
| 566 | *off2 += hlen - olen; |
| 567 | *tot_len += hlen - olen; |
| 568 | |
| 569 | return 0; |
| 570 | } |
| 571 | /* |
| 572 | * @brief The function inserts IPv6 fragmentation header |
| 573 | * and populates it with the passed parameters. |
| 574 | * |
| 575 | * @param pbuf Pointer to the packet buffer |
| 576 | * @param ip_id IP identifier (in network byte order) |
| 577 | * @param frag_offset Fragment offset (in network byte order) |
| 578 | * @param is_last_frag Boolean indicating if the fragment header is for |
| 579 | * last fragment or not. |
| 580 | * |
| 581 | * @return -1 on error and 0 on success. |
| 582 | */ |
| 583 | int |
| 584 | nat464_insert_frag46(pbuf_t *pbuf, uint16_t ip_id_val, uint16_t frag_offset, |
| 585 | boolean_t is_last_frag) |
| 586 | { |
| 587 | struct ip6_frag *p_ip6_frag = NULL; |
| 588 | struct ip6_hdr *p_ip6h = NULL; |
| 589 | |
| 590 | /* Insert IPv6 fragmentation header */ |
| 591 | if (pbuf_resize_segment(pbuf, off: sizeof(struct ip6_hdr), olen: 0, |
| 592 | nlen: sizeof(struct ip6_frag)) == NULL) { |
| 593 | return -1; |
| 594 | } |
| 595 | |
| 596 | p_ip6h = mtod(pbuf->pb_mbuf, struct ip6_hdr *); |
| 597 | p_ip6_frag = (struct ip6_frag *)pbuf_contig_segment(pbuf, |
| 598 | off: sizeof(struct ip6_hdr), len: sizeof(struct ip6_frag)); |
| 599 | |
| 600 | if (p_ip6_frag == NULL) { |
| 601 | return -1; |
| 602 | } |
| 603 | |
| 604 | /* Populate IPv6 fragmentation header */ |
| 605 | p_ip6_frag->ip6f_nxt = p_ip6h->ip6_nxt; |
| 606 | p_ip6_frag->ip6f_reserved = 0; |
| 607 | p_ip6_frag->ip6f_offlg = (uint16_t)(frag_offset << 3); |
| 608 | if (!is_last_frag) { |
| 609 | p_ip6_frag->ip6f_offlg |= 0x1; |
| 610 | } |
| 611 | p_ip6_frag->ip6f_offlg = htons(p_ip6_frag->ip6f_offlg); |
| 612 | p_ip6_frag->ip6f_ident = ip_id_val; |
| 613 | |
| 614 | /* Update IPv6 header */ |
| 615 | p_ip6h->ip6_nxt = IPPROTO_FRAGMENT; |
| 616 | p_ip6h->ip6_plen = htons(ntohs(p_ip6h->ip6_plen) + |
| 617 | sizeof(struct ip6_frag)); |
| 618 | |
| 619 | return 0; |
| 620 | } |
| 621 | |
| 622 | int |
| 623 | nat464_translate_64(pbuf_t *pbuf, int off, uint8_t tos, |
| 624 | uint8_t *proto, uint8_t ttl, struct in_addr src_v4, |
| 625 | struct in_addr dst_v4, uint64_t tot_len, boolean_t *p_is_first_frag) |
| 626 | { |
| 627 | struct ip *ip4; |
| 628 | struct ip6_frag *p_frag6 = NULL; |
| 629 | struct ip6_frag frag6 = {}; |
| 630 | boolean_t is_frag = FALSE; |
| 631 | uint16_t ip_frag_off = 0; |
| 632 | |
| 633 | /* |
| 634 | * ip_input asserts for rcvif to be not NULL |
| 635 | * That may not be true for two corner cases |
| 636 | * 1. If for some reason a local app sends DNS |
| 637 | * AAAA query to local host |
| 638 | * 2. If IPv6 stack in kernel internally generates a |
| 639 | * message destined for a synthesized IPv6 end-point. |
| 640 | */ |
| 641 | if (pbuf->pb_ifp == NULL) { |
| 642 | return NT_DROP; |
| 643 | } |
| 644 | |
| 645 | if (*proto == IPPROTO_FRAGMENT) { |
| 646 | p_frag6 = (struct ip6_frag *)pbuf_contig_segment(pbuf, |
| 647 | off: sizeof(struct ip6_hdr), len: sizeof(struct ip6_frag)); |
| 648 | if (p_frag6 == NULL) { |
| 649 | ip6stat.ip6s_clat464_in_64frag_transfail_drop++; |
| 650 | return NT_DROP; |
| 651 | } |
| 652 | |
| 653 | frag6 = *p_frag6; |
| 654 | p_frag6 = NULL; |
| 655 | *proto = frag6.ip6f_nxt; |
| 656 | off += sizeof(struct ip6_frag); |
| 657 | is_frag = TRUE; |
| 658 | ip_frag_off = (ntohs(frag6.ip6f_offlg & IP6F_OFF_MASK)) >> 3; |
| 659 | if (ip_frag_off != 0) { |
| 660 | *p_is_first_frag = FALSE; |
| 661 | } |
| 662 | } |
| 663 | |
| 664 | ip4 = (struct ip *)pbuf_resize_segment(pbuf, off: 0, olen: off, nlen: sizeof(*ip4)); |
| 665 | if (ip4 == NULL) { |
| 666 | return NT_DROP; |
| 667 | } |
| 668 | ip4->ip_v = 4; |
| 669 | ip4->ip_hl = 5; |
| 670 | ip4->ip_tos = tos; |
| 671 | ip4->ip_len = htons((uint16_t)(sizeof(*ip4) + (tot_len - off))); |
| 672 | ip4->ip_id = 0; |
| 673 | ip4->ip_off = 0; |
| 674 | ip4->ip_ttl = ttl; |
| 675 | ip4->ip_p = *proto; |
| 676 | ip4->ip_sum = 0; |
| 677 | ip4->ip_src = src_v4; |
| 678 | ip4->ip_dst = dst_v4; |
| 679 | if (is_frag) { |
| 680 | /* |
| 681 | * https://tools.ietf.org/html/rfc7915#section-5.1.1 |
| 682 | * Identification: Copied from the low-order 16 bits in the |
| 683 | * Identification field in the Fragment Header. |
| 684 | */ |
| 685 | ip4->ip_id = ntohl(frag6.ip6f_ident) & 0xffff; |
| 686 | ip4->ip_id = htons(ip4->ip_id); |
| 687 | if (frag6.ip6f_offlg & IP6F_MORE_FRAG) { |
| 688 | ip_frag_off |= IP_MF; |
| 689 | } |
| 690 | ip4->ip_off = htons(ip_frag_off); |
| 691 | } else { |
| 692 | ip4->ip_off |= htons(IP_DF); |
| 693 | } |
| 694 | |
| 695 | /* |
| 696 | * Defer calculating ip_sum for ICMPv6 as we do it |
| 697 | * later in Protocol translation |
| 698 | */ |
| 699 | if (*proto != IPPROTO_ICMPV6) { |
| 700 | ip4->ip_sum = pbuf_inet_cksum(pbuf, 0, 0, ip4->ip_hl << 2); |
| 701 | } |
| 702 | |
| 703 | if (clat_debug) { |
| 704 | char buf1[MAX_IPv4_STR_LEN], buf2[MAX_IPv4_STR_LEN]; |
| 705 | clat_log2((LOG_DEBUG, "%s translated to IPv4 ip_len: %#x " |
| 706 | "ip_p: %d ip_sum: %#x ip_src: %s ip_dst: %s \n" , __func__, |
| 707 | ntohs(ip4->ip_len), ip4->ip_p, ntohs(ip4->ip_sum), |
| 708 | inet_ntop(AF_INET, (void *)&ip4->ip_src, buf1, sizeof(buf1)), |
| 709 | inet_ntop(AF_INET, (void *)&ip4->ip_dst, buf2, sizeof(buf2)))); |
| 710 | } |
| 711 | return NT_NAT64; |
| 712 | } |
| 713 | /* |
| 714 | * @brief The routine translates the IPv4 header to IPv6 header. |
| 715 | * |
| 716 | * @param pbuf Pointer to the generic packet buffer |
| 717 | * @param off Offset to the end of IP header |
| 718 | * @param tos Type of service |
| 719 | * @param proto Protocol running over IP |
| 720 | * @param ttl Time to live |
| 721 | * @param src_v6 Source IPv6 address |
| 722 | * @param dst_v6 Destination IPv6 address |
| 723 | * @param tot_len Total payload length |
| 724 | * |
| 725 | * @return NT_NAT64 if IP header translation is successful, else error |
| 726 | */ |
| 727 | int |
| 728 | nat464_translate_46(pbuf_t *pbuf, uint16_t off, uint8_t tos, |
| 729 | uint8_t proto, uint8_t ttl, struct in6_addr src_v6, |
| 730 | struct in6_addr dst_v6, uint16_t tot_len) |
| 731 | { |
| 732 | struct ip6_hdr *ip6; |
| 733 | |
| 734 | if (pbuf->pb_ifp == NULL) { |
| 735 | return NT_DROP; |
| 736 | } |
| 737 | |
| 738 | /* |
| 739 | * Trim the buffer from head of size equal to to off (which is equal to |
| 740 | * the size of IP header and prepend IPv6 header length to the buffer |
| 741 | */ |
| 742 | ip6 = (struct ip6_hdr *)pbuf_resize_segment(pbuf, off: 0, olen: off, nlen: sizeof(*ip6)); |
| 743 | if (ip6 == NULL) { |
| 744 | return NT_DROP; |
| 745 | } |
| 746 | ip6->ip6_flow = htonl((6 << 28) | (tos << 20)); |
| 747 | ip6->ip6_plen = htons(tot_len - off); |
| 748 | ip6->ip6_nxt = proto; |
| 749 | ip6->ip6_hlim = ttl; |
| 750 | ip6->ip6_src = src_v6; |
| 751 | ip6->ip6_dst = dst_v6; |
| 752 | |
| 753 | if (clat_debug) { |
| 754 | char buf1[MAX_IPv6_STR_LEN], buf2[MAX_IPv6_STR_LEN]; |
| 755 | clat_log2((LOG_DEBUG, "%s translated to IPv6 ip6_plen: %#x " |
| 756 | " ip6_nxt: %d ip6_src: %s ip6_dst: %s \n" , __func__, |
| 757 | ntohs(ip6->ip6_plen), ip6->ip6_nxt, |
| 758 | inet_ntop(AF_INET6, (void *)&ip6->ip6_src, buf1, sizeof(buf1)), |
| 759 | inet_ntop(AF_INET6, (void *)&ip6->ip6_dst, buf2, sizeof(buf2)))); |
| 760 | } |
| 761 | return NT_NAT64; |
| 762 | } |
| 763 | |
| 764 | /* Handle the next protocol checksum */ |
| 765 | /* |
| 766 | * @brief This routine translates the Proto running over IP and updates the checksum |
| 767 | * for IP header translation. It also updates pbuf checksum flags and related fields. |
| 768 | * |
| 769 | * @param pbuf Pointer to protocol buffer |
| 770 | * @param nsrc New source address |
| 771 | * @param ndst New destination address |
| 772 | * @param af Old family |
| 773 | * @param naf New family |
| 774 | * |
| 775 | * @return void |
| 776 | */ |
| 777 | int |
| 778 | nat464_translate_proto(pbuf_t *pbuf, struct nat464_addr *osrc, |
| 779 | struct nat464_addr *odst, uint8_t oproto, protocol_family_t af, |
| 780 | protocol_family_t naf, int direction, boolean_t only_csum) |
| 781 | { |
| 782 | struct ip *iph = NULL; |
| 783 | struct ip6_hdr *ip6h = NULL; |
| 784 | uint16_t hlen = 0, plen = 0; |
| 785 | uint16_t tot_len = 0; |
| 786 | void *nsrc = NULL, *ndst = NULL; |
| 787 | uint8_t *proto = 0; |
| 788 | uint16_t *psum = NULL; |
| 789 | boolean_t do_ones_complement = FALSE; |
| 790 | |
| 791 | /* For now these routines only support 464 translations */ |
| 792 | VERIFY(af != naf); |
| 793 | VERIFY(af == PF_INET || af == PF_INET6); |
| 794 | |
| 795 | /* |
| 796 | * For now out must be for v4 to v6 translation |
| 797 | * and in must be for v6 to v4 translation. |
| 798 | */ |
| 799 | switch (naf) { |
| 800 | case PF_INET: { |
| 801 | iph = pbuf->pb_data; |
| 802 | hlen = (uint16_t)(iph->ip_hl << 2); |
| 803 | plen = ntohs(iph->ip_len) - hlen; |
| 804 | tot_len = ntohs(iph->ip_len); |
| 805 | nsrc = &iph->ip_src; |
| 806 | ndst = &iph->ip_dst; |
| 807 | proto = &iph->ip_p; |
| 808 | break; |
| 809 | } |
| 810 | case PF_INET6: { |
| 811 | ip6h = pbuf->pb_data; |
| 812 | hlen = (uint16_t)sizeof(*ip6h); |
| 813 | plen = ntohs(ip6h->ip6_plen); |
| 814 | tot_len = hlen + plen; |
| 815 | nsrc = &ip6h->ip6_src; |
| 816 | ndst = &ip6h->ip6_dst; |
| 817 | proto = &ip6h->ip6_nxt; |
| 818 | break; |
| 819 | } |
| 820 | default: |
| 821 | return NT_DROP; /* We should never come here */ |
| 822 | } |
| 823 | |
| 824 | if (*proto != oproto) { |
| 825 | return NT_DROP; |
| 826 | } |
| 827 | |
| 828 | /* |
| 829 | * We may want to manipulate csum flags in some cases |
| 830 | * and not act on the protocol header as it may not |
| 831 | * carry protocol checksums. |
| 832 | * For example, fragments other than the first one would |
| 833 | * not carry protocol headers. |
| 834 | */ |
| 835 | if (only_csum) { |
| 836 | /* |
| 837 | * Only translate ICMP proto in the header |
| 838 | * and adjust checksums |
| 839 | */ |
| 840 | if (*proto == IPPROTO_ICMP) { |
| 841 | if (naf != PF_INET6) { |
| 842 | return NT_DROP; |
| 843 | } |
| 844 | |
| 845 | *proto = IPPROTO_ICMPV6; |
| 846 | } else if (*proto == IPPROTO_ICMPV6) { |
| 847 | if (naf != PF_INET) { |
| 848 | return NT_DROP; |
| 849 | } |
| 850 | |
| 851 | *proto = IPPROTO_ICMP; |
| 852 | /* Recalculate IP checksum as proto field has changed */ |
| 853 | iph->ip_sum = 0; |
| 854 | iph->ip_sum = pbuf_inet_cksum(pbuf, 0, 0, hlen); |
| 855 | } |
| 856 | goto done; |
| 857 | } |
| 858 | |
| 859 | switch (*proto) { |
| 860 | case IPPROTO_UDP: { |
| 861 | struct udphdr *uh = (struct udphdr *)pbuf_contig_segment(pbuf, off: hlen, |
| 862 | len: sizeof(*uh)); |
| 863 | |
| 864 | if (uh == NULL) { |
| 865 | return NT_DROP; |
| 866 | } |
| 867 | |
| 868 | if (!(*pbuf->pb_csum_flags & (CSUM_UDP | CSUM_PARTIAL)) && |
| 869 | uh->uh_sum == 0 && af == PF_INET && naf == PF_INET6) { |
| 870 | uh->uh_sum = pbuf_inet6_cksum(pbuf, IPPROTO_UDP, |
| 871 | hlen, ntohs(ip6h->ip6_plen)); |
| 872 | if (uh->uh_sum == 0) { |
| 873 | uh->uh_sum = 0xffff; |
| 874 | } |
| 875 | goto done; |
| 876 | } |
| 877 | |
| 878 | psum = &uh->uh_sum; |
| 879 | break; |
| 880 | } |
| 881 | case IPPROTO_TCP: { |
| 882 | struct tcphdr *th = (struct tcphdr *)pbuf_contig_segment(pbuf, off: hlen, |
| 883 | len: sizeof(*th)); |
| 884 | |
| 885 | if (th == NULL) { |
| 886 | return NT_DROP; |
| 887 | } |
| 888 | |
| 889 | psum = &th->th_sum; |
| 890 | break; |
| 891 | } |
| 892 | } |
| 893 | |
| 894 | /* |
| 895 | * Translate the protocol header, update IP header if needed, |
| 896 | * calculate checksums and update the checksum flags. |
| 897 | */ |
| 898 | switch (*proto) { |
| 899 | case IPPROTO_UDP: |
| 900 | /* Fall through */ |
| 901 | case IPPROTO_TCP: |
| 902 | { |
| 903 | /* |
| 904 | * If it is a locally generated and has CSUM flags set |
| 905 | * for TCP and UDP it means we have pseudo header checksum |
| 906 | * that has not yet been one's complemented. |
| 907 | */ |
| 908 | if (direction == NT_OUT && |
| 909 | (*pbuf->pb_csum_flags & CSUM_PARTIAL)) { |
| 910 | do_ones_complement = TRUE; |
| 911 | } |
| 912 | |
| 913 | nat464_addr_cksum_fixup(psum, osrc, (struct nat464_addr *)nsrc, |
| 914 | af, naf, (*proto == IPPROTO_UDP) ? 1 : 0, do_ones_complement); |
| 915 | nat464_addr_cksum_fixup(psum, odst, (struct nat464_addr *)ndst, |
| 916 | af, naf, (*proto == IPPROTO_UDP) ? 1 : 0, do_ones_complement); |
| 917 | |
| 918 | break; |
| 919 | } |
| 920 | case IPPROTO_ICMP: { |
| 921 | if (naf != PF_INET6) { /* allow only v6 as naf for ICMP */ |
| 922 | return NT_DROP; |
| 923 | } |
| 924 | |
| 925 | struct icmp *icmph = NULL; |
| 926 | struct icmp6_hdr *icmp6h = NULL; |
| 927 | uint16_t ip2off = 0, hlen2 = 0, tot_len2 = 0; |
| 928 | |
| 929 | icmph = (struct icmp*) pbuf_contig_segment(pbuf, off: hlen, |
| 930 | ICMP_MINLEN); |
| 931 | if (icmph == NULL) { |
| 932 | return NT_DROP; |
| 933 | } |
| 934 | |
| 935 | /* Translate the ICMP header */ |
| 936 | if (nat464_translate_icmp(PF_INET6, arg: icmph) != 0) { |
| 937 | return NT_DROP; |
| 938 | } |
| 939 | |
| 940 | *proto = IPPROTO_ICMPV6; |
| 941 | icmp6h = (struct icmp6_hdr *)(uintptr_t)icmph; |
| 942 | pbuf_copy_back(pbuf, hlen, sizeof(struct icmp6_hdr), |
| 943 | icmp6h); |
| 944 | |
| 945 | /*Translate the inner IP header only for error messages */ |
| 946 | if (ICMP6_ERRORTYPE(icmp6h->icmp6_type)) { |
| 947 | ip2off = (uint16_t)(hlen + sizeof(*icmp6h)); |
| 948 | struct ip *iph2 = NULL; |
| 949 | iph2 = (struct ip*) pbuf_contig_segment(pbuf, off: ip2off, |
| 950 | len: sizeof(*iph2)); |
| 951 | if (iph2 == NULL) { |
| 952 | return NT_DROP; |
| 953 | } |
| 954 | |
| 955 | hlen2 = (uint16_t)(ip2off + (iph2->ip_hl << 2)); |
| 956 | tot_len2 = ntohs(iph2->ip_len); |
| 957 | |
| 958 | /* Destination in outer IP should be Source in inner IP */ |
| 959 | VERIFY(IN_ARE_ADDR_EQUAL(&odst->natv4addr, &iph2->ip_src)); |
| 960 | if (nat464_translate_icmp_ip(pbuf, off: ip2off, tot_len: &tot_len, |
| 961 | off2: &hlen2, proto2: iph2->ip_p, ttl2: iph2->ip_ttl, tot_len2, |
| 962 | src: (struct nat464_addr *)ndst, dst: (struct nat464_addr *)nsrc, |
| 963 | PF_INET, PF_INET6) != 0) { |
| 964 | return NT_DROP; |
| 965 | } |
| 966 | /* Update total length/payload length for outer header */ |
| 967 | switch (naf) { |
| 968 | case PF_INET: |
| 969 | iph->ip_len = htons(tot_len); |
| 970 | break; |
| 971 | case PF_INET6: |
| 972 | ip6h->ip6_plen = htons(tot_len - hlen); |
| 973 | break; |
| 974 | } |
| 975 | iph2 = NULL; |
| 976 | } |
| 977 | |
| 978 | icmp6h->icmp6_cksum = 0; |
| 979 | icmp6h->icmp6_cksum = pbuf_inet6_cksum(pbuf, IPPROTO_ICMPV6, hlen, |
| 980 | ntohs(ip6h->ip6_plen)); |
| 981 | |
| 982 | clat_log2((LOG_DEBUG, "%s translated to ICMPV6 type: %d " |
| 983 | "code: %d checksum: %#x \n" , __func__, icmp6h->icmp6_type, |
| 984 | icmp6h->icmp6_code, icmp6h->icmp6_cksum)); |
| 985 | |
| 986 | icmph = NULL; |
| 987 | icmp6h = NULL; |
| 988 | break; |
| 989 | } |
| 990 | case IPPROTO_ICMPV6: |
| 991 | { if (naf != PF_INET) { /* allow only v4 as naf for ICMPV6 */ |
| 992 | return NT_DROP; |
| 993 | } |
| 994 | |
| 995 | struct icmp6_hdr *icmp6h = NULL; |
| 996 | struct icmp *icmph = NULL; |
| 997 | uint16_t ip2off = 0, hlen2 = 0, tot_len2 = 0; |
| 998 | |
| 999 | icmp6h = (struct icmp6_hdr*) pbuf_contig_segment(pbuf, off: hlen, |
| 1000 | len: sizeof(*icmp6h)); |
| 1001 | if (icmp6h == NULL) { |
| 1002 | return NT_DROP; |
| 1003 | } |
| 1004 | |
| 1005 | /* Translate the ICMP header */ |
| 1006 | if (nat464_translate_icmp(PF_INET, arg: icmp6h) != 0) { |
| 1007 | return NT_DROP; |
| 1008 | } |
| 1009 | |
| 1010 | *proto = IPPROTO_ICMP; |
| 1011 | icmph = (struct icmp *)(uintptr_t)icmp6h; |
| 1012 | pbuf_copy_back(pbuf, hlen, ICMP_MINLEN, |
| 1013 | icmph); |
| 1014 | |
| 1015 | /*Translate the inner IP header only for error messages */ |
| 1016 | if (ICMP_ERRORTYPE(icmph->icmp_type)) { |
| 1017 | ip2off = hlen + ICMP_MINLEN; |
| 1018 | struct ip6_hdr *iph2 = NULL; |
| 1019 | iph2 = (struct ip6_hdr*) pbuf_contig_segment(pbuf, off: ip2off, |
| 1020 | len: sizeof(*iph2)); |
| 1021 | if (iph2 == NULL) { |
| 1022 | return NT_DROP; |
| 1023 | } |
| 1024 | |
| 1025 | /* hlen2 points to end of inner IP header from the beginning */ |
| 1026 | hlen2 = ip2off + sizeof(struct ip6_hdr); |
| 1027 | tot_len2 = ntohs(iph2->ip6_plen) + sizeof(struct ip6_hdr); |
| 1028 | |
| 1029 | if (nat464_translate_icmp_ip(pbuf, off: ip2off, tot_len: &tot_len, |
| 1030 | off2: &hlen2, proto2: iph2->ip6_nxt, ttl2: iph2->ip6_hlim, tot_len2, |
| 1031 | src: (struct nat464_addr *)ndst, dst: (struct nat464_addr *)nsrc, |
| 1032 | PF_INET6, PF_INET) != 0) { |
| 1033 | return NT_DROP; |
| 1034 | } |
| 1035 | |
| 1036 | /* Update total length for outer header */ |
| 1037 | switch (naf) { |
| 1038 | case PF_INET: |
| 1039 | iph->ip_len = htons(tot_len); |
| 1040 | break; |
| 1041 | case PF_INET6: |
| 1042 | ip6h->ip6_plen = htons(tot_len - hlen); |
| 1043 | break; |
| 1044 | } |
| 1045 | iph2 = NULL; |
| 1046 | } |
| 1047 | /* Recalculate IP checksum as some IP fields might have changed */ |
| 1048 | iph->ip_sum = 0; |
| 1049 | iph->ip_sum = pbuf_inet_cksum(pbuf, 0, 0, iph->ip_hl << 2); |
| 1050 | icmph->icmp_cksum = 0; |
| 1051 | icmph->icmp_cksum = pbuf_inet_cksum(pbuf, 0, hlen, |
| 1052 | ntohs(iph->ip_len) - hlen); |
| 1053 | |
| 1054 | clat_log2((LOG_DEBUG, "%s translated to ICMP type: %d " |
| 1055 | "code: %d checksum: %#x \n" , __func__, icmph->icmp_type, |
| 1056 | icmph->icmp_code, icmph->icmp_cksum)); |
| 1057 | |
| 1058 | icmp6h = NULL; |
| 1059 | icmph = NULL; |
| 1060 | break;} |
| 1061 | |
| 1062 | /* |
| 1063 | * https://tools.ietf.org/html/rfc7915#section-5.1.1 |
| 1064 | * If the Next Header field of the Fragment Header is an |
| 1065 | * extension header (except ESP, but including the Authentication |
| 1066 | * Header (AH)), then the packet SHOULD be dropped and logged. |
| 1067 | */ |
| 1068 | case IPPROTO_HOPOPTS: |
| 1069 | case IPPROTO_ROUTING: |
| 1070 | case IPPROTO_DSTOPTS: |
| 1071 | case IPPROTO_AH: |
| 1072 | return NT_DROP; |
| 1073 | |
| 1074 | case IPPROTO_FRAGMENT: |
| 1075 | /* |
| 1076 | * The fragment header is appended after or removed before |
| 1077 | * calling into this routine. |
| 1078 | */ |
| 1079 | VERIFY(FALSE); |
| 1080 | case IPPROTO_ESP: |
| 1081 | break; |
| 1082 | |
| 1083 | default: |
| 1084 | return NT_DROP; |
| 1085 | } |
| 1086 | |
| 1087 | done: |
| 1088 | /* Update checksum flags and offsets based on direction */ |
| 1089 | if (direction == NT_OUT) { |
| 1090 | if ((*pbuf->pb_csum_flags & (CSUM_DATA_VALID | CSUM_PARTIAL)) == |
| 1091 | (CSUM_DATA_VALID | CSUM_PARTIAL)) { |
| 1092 | (pbuf->pb_mbuf)->m_pkthdr.csum_tx_start += CLAT46_HDR_EXPANSION_OVERHD; |
| 1093 | (pbuf->pb_mbuf)->m_pkthdr.csum_tx_stuff += CLAT46_HDR_EXPANSION_OVERHD; |
| 1094 | } |
| 1095 | |
| 1096 | if (*pbuf->pb_csum_flags & CSUM_TCP) { |
| 1097 | *pbuf->pb_csum_flags |= CSUM_TCPIPV6; |
| 1098 | } |
| 1099 | if (*pbuf->pb_csum_flags & CSUM_UDP) { |
| 1100 | *pbuf->pb_csum_flags |= CSUM_UDPIPV6; |
| 1101 | } |
| 1102 | if (*pbuf->pb_csum_flags & CSUM_FRAGMENT) { |
| 1103 | *pbuf->pb_csum_flags |= CSUM_FRAGMENT_IPV6; |
| 1104 | } |
| 1105 | |
| 1106 | /* Clear IPv4 checksum flags */ |
| 1107 | *pbuf->pb_csum_flags &= ~(CSUM_IP | CSUM_IP_FRAGS | CSUM_DELAY_DATA | CSUM_FRAGMENT); |
| 1108 | /* |
| 1109 | * If the packet requires TCP segmentation due to TSO offload, |
| 1110 | * then change the checksum flag to indicate that an IPv6 |
| 1111 | * TCP segmentation is needed now. |
| 1112 | */ |
| 1113 | if (*pbuf->pb_csum_flags & CSUM_TSO_IPV4) { |
| 1114 | *pbuf->pb_csum_flags &= ~CSUM_TSO_IPV4; |
| 1115 | *pbuf->pb_csum_flags |= CSUM_TSO_IPV6; |
| 1116 | } |
| 1117 | } else if (direction == NT_IN) { |
| 1118 | /* XXX On input just reset csum flags */ |
| 1119 | *pbuf->pb_csum_flags = 0; /* Reset all flags for now */ |
| 1120 | #if 0 |
| 1121 | /* Update csum flags and offsets for rx */ |
| 1122 | if (*pbuf->pb_csum_flags & CSUM_PARTIAL) { |
| 1123 | (pbuf->pb_mbuf)->m_pkthdr.csum_rx_start -= CLAT46_HDR_EXPANSION_OVERHD; |
| 1124 | } |
| 1125 | #endif |
| 1126 | } |
| 1127 | return NT_NAT64; |
| 1128 | } |
| 1129 | |
| 1130 | /* Fix the proto checksum for address change */ |
| 1131 | static void |
| 1132 | nat464_addr_cksum_fixup(uint16_t *pc, struct nat464_addr *ao, struct nat464_addr *an, |
| 1133 | protocol_family_t af, protocol_family_t naf, uint8_t u, boolean_t do_ones_complement) |
| 1134 | { |
| 1135 | /* Currently we only support v4 to v6 and vice versa */ |
| 1136 | VERIFY(af != naf); |
| 1137 | |
| 1138 | switch (af) { |
| 1139 | case PF_INET: |
| 1140 | switch (naf) { |
| 1141 | case PF_INET6: |
| 1142 | if (do_ones_complement) { |
| 1143 | *pc = ~nat464_cksum_fixup(nat464_cksum_fixup( |
| 1144 | nat464_cksum_fixup(nat464_cksum_fixup(nat464_cksum_fixup( |
| 1145 | nat464_cksum_fixup(nat464_cksum_fixup(nat464_cksum_fixup(~*pc, |
| 1146 | ao->nataddr16[0], an->nataddr16[0], u), |
| 1147 | ao->nataddr16[1], an->nataddr16[1], u), |
| 1148 | 0, an->nataddr16[2], u), |
| 1149 | 0, an->nataddr16[3], u), |
| 1150 | 0, an->nataddr16[4], u), |
| 1151 | 0, an->nataddr16[5], u), |
| 1152 | 0, an->nataddr16[6], u), |
| 1153 | 0, an->nataddr16[7], u); |
| 1154 | } else { |
| 1155 | *pc = nat464_cksum_fixup(nat464_cksum_fixup( |
| 1156 | nat464_cksum_fixup(nat464_cksum_fixup(nat464_cksum_fixup( |
| 1157 | nat464_cksum_fixup(nat464_cksum_fixup(nat464_cksum_fixup(*pc, |
| 1158 | ao->nataddr16[0], an->nataddr16[0], u), |
| 1159 | ao->nataddr16[1], an->nataddr16[1], u), |
| 1160 | 0, an->nataddr16[2], u), |
| 1161 | 0, an->nataddr16[3], u), |
| 1162 | 0, an->nataddr16[4], u), |
| 1163 | 0, an->nataddr16[5], u), |
| 1164 | 0, an->nataddr16[6], u), |
| 1165 | 0, an->nataddr16[7], u); |
| 1166 | } |
| 1167 | break; |
| 1168 | } |
| 1169 | break; |
| 1170 | case PF_INET6: |
| 1171 | /* |
| 1172 | * XXX For NAT464 this only applies to the incoming path. |
| 1173 | * The checksum therefore is already ones complemented. |
| 1174 | * Therefore we just perform normal fixup. |
| 1175 | */ |
| 1176 | switch (naf) { |
| 1177 | case PF_INET: |
| 1178 | *pc = nat464_cksum_fixup(nat464_cksum_fixup( |
| 1179 | nat464_cksum_fixup(nat464_cksum_fixup(nat464_cksum_fixup( |
| 1180 | nat464_cksum_fixup(nat464_cksum_fixup(nat464_cksum_fixup(*pc, |
| 1181 | ao->nataddr16[0], an->nataddr16[0], u), |
| 1182 | ao->nataddr16[1], an->nataddr16[1], u), |
| 1183 | ao->nataddr16[2], 0, u), |
| 1184 | ao->nataddr16[3], 0, u), |
| 1185 | ao->nataddr16[4], 0, u), |
| 1186 | ao->nataddr16[5], 0, u), |
| 1187 | ao->nataddr16[6], 0, u), |
| 1188 | ao->nataddr16[7], 0, u); |
| 1189 | break; |
| 1190 | } |
| 1191 | break; |
| 1192 | } |
| 1193 | } |
| 1194 | |
| 1195 | uint16_t |
| 1196 | nat464_cksum_fixup(uint16_t cksum, uint16_t old, uint16_t new, uint8_t udp) |
| 1197 | { |
| 1198 | uint32_t l; |
| 1199 | |
| 1200 | if (udp && !cksum) { |
| 1201 | return 0; |
| 1202 | } |
| 1203 | l = cksum + old - new; |
| 1204 | l = (l >> 16) + (l & 0xffff); |
| 1205 | l = l & 0xffff; |
| 1206 | if (udp && !l) { |
| 1207 | return 0xffff; |
| 1208 | } |
| 1209 | return (uint16_t)l; |
| 1210 | } |
| 1211 | |
| 1212 | /* CLAT46 event handlers */ |
| 1213 | void |
| 1214 | in6_clat46_eventhdlr_callback(struct eventhandler_entry_arg arg0 __unused, |
| 1215 | in6_clat46_evhdlr_code_t in6_clat46_ev_code, pid_t epid, uuid_t euuid) |
| 1216 | { |
| 1217 | struct kev_msg ev_msg; |
| 1218 | struct kev_netevent_clat46_data clat46_event_data; |
| 1219 | |
| 1220 | bzero(s: &ev_msg, n: sizeof(ev_msg)); |
| 1221 | bzero(s: &clat46_event_data, n: sizeof(clat46_event_data)); |
| 1222 | |
| 1223 | ev_msg.vendor_code = KEV_VENDOR_APPLE; |
| 1224 | ev_msg.kev_class = KEV_NETWORK_CLASS; |
| 1225 | ev_msg.kev_subclass = KEV_NETEVENT_SUBCLASS; |
| 1226 | ev_msg.event_code = KEV_NETEVENT_CLAT46_EVENT; |
| 1227 | |
| 1228 | bzero(s: &clat46_event_data, n: sizeof(clat46_event_data)); |
| 1229 | clat46_event_data.clat46_event_code = in6_clat46_ev_code; |
| 1230 | clat46_event_data.epid = epid; |
| 1231 | uuid_copy(dst: clat46_event_data.euuid, src: euuid); |
| 1232 | |
| 1233 | ev_msg.dv[0].data_ptr = &clat46_event_data; |
| 1234 | ev_msg.dv[0].data_length = sizeof(clat46_event_data); |
| 1235 | |
| 1236 | kev_post_msg(event: &ev_msg); |
| 1237 | } |
| 1238 | |
| 1239 | struct in6_clat46_event_nwk_wq_entry { |
| 1240 | struct nwk_wq_entry nwk_wqe; |
| 1241 | struct kev_netevent_clat46_data in6_clat46_ev_arg; |
| 1242 | }; |
| 1243 | |
| 1244 | static void |
| 1245 | in6_clat46_event_callback(struct nwk_wq_entry *nwk_item) |
| 1246 | { |
| 1247 | struct in6_clat46_event_nwk_wq_entry *p_ev; |
| 1248 | |
| 1249 | p_ev = __container_of(nwk_item, |
| 1250 | struct in6_clat46_event_nwk_wq_entry, nwk_wqe); |
| 1251 | |
| 1252 | EVENTHANDLER_INVOKE(&in6_clat46_evhdlr_ctxt, in6_clat46_event, |
| 1253 | p_ev->in6_clat46_ev_arg.clat46_event_code, p_ev->in6_clat46_ev_arg.epid, |
| 1254 | p_ev->in6_clat46_ev_arg.euuid); |
| 1255 | |
| 1256 | kfree_type(struct in6_clat46_event_nwk_wq_entry, p_ev); |
| 1257 | } |
| 1258 | |
| 1259 | void |
| 1260 | in6_clat46_event_enqueue_nwk_wq_entry(in6_clat46_evhdlr_code_t in6_clat46_event_code, |
| 1261 | pid_t epid, uuid_t euuid) |
| 1262 | { |
| 1263 | struct in6_clat46_event_nwk_wq_entry *p_ev = NULL; |
| 1264 | |
| 1265 | p_ev = kalloc_type(struct in6_clat46_event_nwk_wq_entry, |
| 1266 | Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 1267 | |
| 1268 | p_ev->nwk_wqe.func = in6_clat46_event_callback; |
| 1269 | p_ev->in6_clat46_ev_arg.clat46_event_code = in6_clat46_event_code; |
| 1270 | p_ev->in6_clat46_ev_arg.epid = epid; |
| 1271 | uuid_copy(dst: p_ev->in6_clat46_ev_arg.euuid, src: euuid); |
| 1272 | |
| 1273 | nwk_wq_enqueue(nwk_item: &p_ev->nwk_wqe); |
| 1274 | } |
| 1275 | |