| 1 | /* |
| 2 | * Copyright (c) 2000-2020 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ |
| 29 | /* |
| 30 | * Copyright (c) 1982, 1986, 1989, 1991, 1993 |
| 31 | * The Regents of the University of California. All rights reserved. |
| 32 | * |
| 33 | * Redistribution and use in source and binary forms, with or without |
| 34 | * modification, are permitted provided that the following conditions |
| 35 | * are met: |
| 36 | * 1. Redistributions of source code must retain the above copyright |
| 37 | * notice, this list of conditions and the following disclaimer. |
| 38 | * 2. Redistributions in binary form must reproduce the above copyright |
| 39 | * notice, this list of conditions and the following disclaimer in the |
| 40 | * documentation and/or other materials provided with the distribution. |
| 41 | * 3. All advertising materials mentioning features or use of this software |
| 42 | * must display the following acknowledgement: |
| 43 | * This product includes software developed by the University of |
| 44 | * California, Berkeley and its contributors. |
| 45 | * 4. Neither the name of the University nor the names of its contributors |
| 46 | * may be used to endorse or promote products derived from this software |
| 47 | * without specific prior written permission. |
| 48 | * |
| 49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 59 | * SUCH DAMAGE. |
| 60 | * |
| 61 | * @(#)kern_proc.c 8.4 (Berkeley) 1/4/94 |
| 62 | */ |
| 63 | /* |
| 64 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce |
| 65 | * support for mandatory and extensible security protections. This notice |
| 66 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 67 | * Version 2.0. |
| 68 | */ |
| 69 | /* HISTORY |
| 70 | * 04-Aug-97 Umesh Vaishampayan (umeshv@apple.com) |
| 71 | * Added current_proc_EXTERNAL() function for the use of kernel |
| 72 | * lodable modules. |
| 73 | * |
| 74 | * 05-Jun-95 Mac Gillon (mgillon) at NeXT |
| 75 | * New version based on 3.3NS and 4.4 |
| 76 | */ |
| 77 | |
| 78 | |
| 79 | #include <sys/param.h> |
| 80 | #include <sys/systm.h> |
| 81 | #include <sys/kernel.h> |
| 82 | #include <sys/proc_internal.h> |
| 83 | #include <sys/acct.h> |
| 84 | #include <sys/wait.h> |
| 85 | #include <sys/file_internal.h> |
| 86 | #include <sys/uio.h> |
| 87 | #include <sys/malloc.h> |
| 88 | #include <sys/lock.h> |
| 89 | #include <sys/mbuf.h> |
| 90 | #include <sys/ioctl.h> |
| 91 | #include <sys/tty.h> |
| 92 | #include <sys/signalvar.h> |
| 93 | #include <sys/syslog.h> |
| 94 | #include <sys/sysctl.h> |
| 95 | #include <sys/sysproto.h> |
| 96 | #include <sys/kauth.h> |
| 97 | #include <sys/codesign.h> |
| 98 | #include <sys/kernel_types.h> |
| 99 | #include <sys/ubc.h> |
| 100 | #include <kern/kalloc.h> |
| 101 | #include <kern/smr_hash.h> |
| 102 | #include <kern/task.h> |
| 103 | #include <kern/coalition.h> |
| 104 | #include <sys/coalition.h> |
| 105 | #include <kern/assert.h> |
| 106 | #include <kern/sched_prim.h> |
| 107 | #include <vm/vm_protos.h> |
| 108 | #include <vm/vm_map.h> /* vm_map_switch_protect() */ |
| 109 | #include <vm/vm_pageout.h> |
| 110 | #include <mach/task.h> |
| 111 | #include <mach/message.h> |
| 112 | #include <sys/priv.h> |
| 113 | #include <sys/proc_info.h> |
| 114 | #include <sys/bsdtask_info.h> |
| 115 | #include <sys/persona.h> |
| 116 | #include <sys/sysent.h> |
| 117 | #include <sys/reason.h> |
| 118 | #include <sys/proc_require.h> |
| 119 | #include <sys/kern_debug.h> |
| 120 | #include <IOKit/IOBSD.h> /* IOTaskHasEntitlement() */ |
| 121 | #include <kern/ipc_kobject.h> /* ipc_kobject_set_kobjidx() */ |
| 122 | #include <kern/ast.h> /* proc_filedesc_ast */ |
| 123 | #include <libkern/amfi/amfi.h> |
| 124 | #include <mach-o/loader.h> |
| 125 | #include <os/base.h> /* OS_STRINGIFY */ |
| 126 | |
| 127 | #if CONFIG_CSR |
| 128 | #include <sys/csr.h> |
| 129 | #endif |
| 130 | |
| 131 | #include <sys/kern_memorystatus.h> |
| 132 | |
| 133 | #if CONFIG_MACF |
| 134 | #include <security/mac_framework.h> |
| 135 | #include <security/mac_mach_internal.h> |
| 136 | #endif |
| 137 | |
| 138 | #include <libkern/crypto/sha1.h> |
| 139 | #include <IOKit/IOKitKeys.h> |
| 140 | |
| 141 | /* |
| 142 | * Structure associated with user cacheing. |
| 143 | */ |
| 144 | struct uidinfo { |
| 145 | LIST_ENTRY(uidinfo) ui_hash; |
| 146 | uid_t ui_uid; |
| 147 | size_t ui_proccnt; |
| 148 | }; |
| 149 | #define UIHASH(uid) (&uihashtbl[(uid) & uihash]) |
| 150 | static LIST_HEAD(uihashhead, uidinfo) * uihashtbl; |
| 151 | static u_long uihash; /* size of hash table - 1 */ |
| 152 | |
| 153 | /* |
| 154 | * Other process lists |
| 155 | */ |
| 156 | static struct smr_hash pid_hash; |
| 157 | static struct smr_hash pgrp_hash; |
| 158 | |
| 159 | SECURITY_READ_ONLY_LATE(struct sesshashhead *) sesshashtbl; |
| 160 | SECURITY_READ_ONLY_LATE(u_long) sesshash; |
| 161 | |
| 162 | #if PROC_REF_DEBUG |
| 163 | /* disable panics on leaked proc refs across syscall boundary */ |
| 164 | static TUNABLE(bool, proc_ref_tracking_disabled, "-disable_procref_tracking" , false); |
| 165 | #endif |
| 166 | |
| 167 | struct proclist allproc = LIST_HEAD_INITIALIZER(allproc); |
| 168 | struct proclist zombproc = LIST_HEAD_INITIALIZER(zombproc); |
| 169 | extern struct tty cons; |
| 170 | extern size_t proc_struct_size; |
| 171 | extern size_t proc_and_task_size; |
| 172 | |
| 173 | extern int cs_debug; |
| 174 | |
| 175 | #if DEVELOPMENT || DEBUG |
| 176 | static TUNABLE(bool, syscallfilter_disable, "-disable_syscallfilter" , false); |
| 177 | #endif // DEVELOPMENT || DEBUG |
| 178 | |
| 179 | #if DEBUG |
| 180 | #define __PROC_INTERNAL_DEBUG 1 |
| 181 | #endif |
| 182 | #if CONFIG_COREDUMP |
| 183 | /* Name to give to core files */ |
| 184 | #if defined(XNU_TARGET_OS_BRIDGE) |
| 185 | __XNU_PRIVATE_EXTERN const char * defaultcorefiledir = "/private/var/internal" ; |
| 186 | __XNU_PRIVATE_EXTERN char corefilename[MAXPATHLEN + 1] = {"/private/var/internal/%N.core" }; |
| 187 | __XNU_PRIVATE_EXTERN const char * defaultdrivercorefiledir = "/private/var/internal" ; |
| 188 | __XNU_PRIVATE_EXTERN char drivercorefilename[MAXPATHLEN + 1] = {"/private/var/internal/%N.core" }; |
| 189 | #elif defined(XNU_TARGET_OS_OSX) |
| 190 | __XNU_PRIVATE_EXTERN const char * defaultcorefiledir = "/cores" ; |
| 191 | __XNU_PRIVATE_EXTERN char corefilename[MAXPATHLEN + 1] = {"/cores/core.%P" }; |
| 192 | __XNU_PRIVATE_EXTERN const char * defaultdrivercorefiledir = "/private/var/dextcores" ; |
| 193 | __XNU_PRIVATE_EXTERN char drivercorefilename[MAXPATHLEN + 1] = {"/private/var/dextcores/%N.core" }; |
| 194 | #else |
| 195 | __XNU_PRIVATE_EXTERN const char * defaultcorefiledir = "/private/var/cores" ; |
| 196 | __XNU_PRIVATE_EXTERN char corefilename[MAXPATHLEN + 1] = {"/private/var/cores/%N.core" }; |
| 197 | __XNU_PRIVATE_EXTERN const char * defaultdrivercorefiledir = "/private/var/dextcores" ; |
| 198 | __XNU_PRIVATE_EXTERN char drivercorefilename[MAXPATHLEN + 1] = {"/private/var/dextcores/%N.core" }; |
| 199 | #endif |
| 200 | #endif |
| 201 | |
| 202 | #if PROC_REF_DEBUG |
| 203 | #include <kern/backtrace.h> |
| 204 | #endif |
| 205 | |
| 206 | static LCK_MTX_DECLARE_ATTR(proc_klist_mlock, &proc_mlock_grp, &proc_lck_attr); |
| 207 | |
| 208 | ZONE_DEFINE(pgrp_zone, "pgrp" , |
| 209 | sizeof(struct pgrp), ZC_ZFREE_CLEARMEM); |
| 210 | ZONE_DEFINE(session_zone, "session" , |
| 211 | sizeof(struct session), ZC_ZFREE_CLEARMEM); |
| 212 | ZONE_DEFINE_ID(ZONE_ID_PROC_RO, "proc_ro" , struct proc_ro, |
| 213 | ZC_READONLY | ZC_ZFREE_CLEARMEM); |
| 214 | |
| 215 | typedef uint64_t unaligned_u64 __attribute__((aligned(1))); |
| 216 | |
| 217 | static void orphanpg(struct pgrp * pg); |
| 218 | void proc_name_kdp(proc_t t, char * buf, int size); |
| 219 | boolean_t proc_binary_uuid_kdp(task_t task, uuid_t uuid); |
| 220 | boolean_t current_thread_aborted(void); |
| 221 | int proc_threadname_kdp(void * uth, char * buf, size_t size); |
| 222 | void proc_starttime_kdp(void * p, unaligned_u64 *tv_sec, unaligned_u64 *tv_usec, unaligned_u64 *abstime); |
| 223 | void proc_archinfo_kdp(void* p, cpu_type_t* cputype, cpu_subtype_t* cpusubtype); |
| 224 | uint64_t proc_getcsflags_kdp(void * p); |
| 225 | char * proc_name_address(void * p); |
| 226 | char * proc_longname_address(void *); |
| 227 | |
| 228 | static void pgrp_destroy(struct pgrp *pgrp); |
| 229 | static void pgrp_replace(proc_t p, struct pgrp *pgrp); |
| 230 | static int csops_internal(pid_t pid, int ops, user_addr_t uaddr, user_size_t usersize, user_addr_t uaddittoken); |
| 231 | static boolean_t proc_parent_is_currentproc(proc_t p); |
| 232 | |
| 233 | #if CONFIG_PROC_RESOURCE_LIMITS |
| 234 | extern void task_filedesc_ast(task_t task, int current_size, int soft_limit, int hard_limit); |
| 235 | extern void task_kqworkloop_ast(task_t task, int current_size, int soft_limit, int hard_limit); |
| 236 | #endif |
| 237 | |
| 238 | struct fixjob_iterargs { |
| 239 | struct pgrp * pg; |
| 240 | struct session * mysession; |
| 241 | int entering; |
| 242 | }; |
| 243 | |
| 244 | int fixjob_callback(proc_t, void *); |
| 245 | |
| 246 | uint64_t |
| 247 | get_current_unique_pid(void) |
| 248 | { |
| 249 | proc_t p = current_proc(); |
| 250 | |
| 251 | if (p) { |
| 252 | return proc_uniqueid(p); |
| 253 | } else { |
| 254 | return 0; |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | /* |
| 259 | * Initialize global process hashing structures. |
| 260 | */ |
| 261 | static void |
| 262 | procinit(void) |
| 263 | { |
| 264 | smr_hash_init(smrh: &pid_hash, size: maxproc / 4); |
| 265 | smr_hash_init(smrh: &pgrp_hash, size: maxproc / 4); |
| 266 | sesshashtbl = hashinit(count: maxproc / 4, M_PROC, hashmask: &sesshash); |
| 267 | uihashtbl = hashinit(count: maxproc / 16, M_PROC, hashmask: &uihash); |
| 268 | } |
| 269 | STARTUP(EARLY_BOOT, STARTUP_RANK_FIRST, procinit); |
| 270 | |
| 271 | /* |
| 272 | * Change the count associated with number of processes |
| 273 | * a given user is using. This routine protects the uihash |
| 274 | * with the list lock |
| 275 | */ |
| 276 | size_t |
| 277 | chgproccnt(uid_t uid, int diff) |
| 278 | { |
| 279 | struct uidinfo *uip; |
| 280 | struct uidinfo *newuip = NULL; |
| 281 | struct uihashhead *uipp; |
| 282 | size_t retval; |
| 283 | |
| 284 | again: |
| 285 | proc_list_lock(); |
| 286 | uipp = UIHASH(uid); |
| 287 | for (uip = uipp->lh_first; uip != 0; uip = uip->ui_hash.le_next) { |
| 288 | if (uip->ui_uid == uid) { |
| 289 | break; |
| 290 | } |
| 291 | } |
| 292 | if (uip) { |
| 293 | uip->ui_proccnt += diff; |
| 294 | if (uip->ui_proccnt > 0) { |
| 295 | retval = uip->ui_proccnt; |
| 296 | proc_list_unlock(); |
| 297 | goto out; |
| 298 | } |
| 299 | LIST_REMOVE(uip, ui_hash); |
| 300 | retval = 0; |
| 301 | proc_list_unlock(); |
| 302 | kfree_type(struct uidinfo, uip); |
| 303 | goto out; |
| 304 | } |
| 305 | if (diff <= 0) { |
| 306 | if (diff == 0) { |
| 307 | retval = 0; |
| 308 | proc_list_unlock(); |
| 309 | goto out; |
| 310 | } |
| 311 | panic("chgproccnt: lost user" ); |
| 312 | } |
| 313 | if (newuip != NULL) { |
| 314 | uip = newuip; |
| 315 | newuip = NULL; |
| 316 | LIST_INSERT_HEAD(uipp, uip, ui_hash); |
| 317 | uip->ui_uid = uid; |
| 318 | uip->ui_proccnt = diff; |
| 319 | retval = diff; |
| 320 | proc_list_unlock(); |
| 321 | goto out; |
| 322 | } |
| 323 | proc_list_unlock(); |
| 324 | newuip = kalloc_type(struct uidinfo, Z_WAITOK | Z_NOFAIL); |
| 325 | goto again; |
| 326 | out: |
| 327 | kfree_type(struct uidinfo, newuip); |
| 328 | return retval; |
| 329 | } |
| 330 | |
| 331 | /* |
| 332 | * Is p an inferior of the current process? |
| 333 | */ |
| 334 | int |
| 335 | inferior(proc_t p) |
| 336 | { |
| 337 | int retval = 0; |
| 338 | |
| 339 | proc_list_lock(); |
| 340 | for (; p != current_proc(); p = p->p_pptr) { |
| 341 | if (proc_getpid(p) == 0) { |
| 342 | goto out; |
| 343 | } |
| 344 | } |
| 345 | retval = 1; |
| 346 | out: |
| 347 | proc_list_unlock(); |
| 348 | return retval; |
| 349 | } |
| 350 | |
| 351 | /* |
| 352 | * Is p an inferior of t ? |
| 353 | */ |
| 354 | int |
| 355 | isinferior(proc_t p, proc_t t) |
| 356 | { |
| 357 | int retval = 0; |
| 358 | int nchecked = 0; |
| 359 | proc_t start = p; |
| 360 | |
| 361 | /* if p==t they are not inferior */ |
| 362 | if (p == t) { |
| 363 | return 0; |
| 364 | } |
| 365 | |
| 366 | proc_list_lock(); |
| 367 | for (; p != t; p = p->p_pptr) { |
| 368 | nchecked++; |
| 369 | |
| 370 | /* Detect here if we're in a cycle */ |
| 371 | if ((proc_getpid(p) == 0) || (p->p_pptr == start) || (nchecked >= nprocs)) { |
| 372 | goto out; |
| 373 | } |
| 374 | } |
| 375 | retval = 1; |
| 376 | out: |
| 377 | proc_list_unlock(); |
| 378 | return retval; |
| 379 | } |
| 380 | |
| 381 | int |
| 382 | proc_isinferior(int pid1, int pid2) |
| 383 | { |
| 384 | proc_t p = PROC_NULL; |
| 385 | proc_t t = PROC_NULL; |
| 386 | int retval = 0; |
| 387 | |
| 388 | if (((p = proc_find(pid: pid1)) != (proc_t)0) && ((t = proc_find(pid: pid2)) != (proc_t)0)) { |
| 389 | retval = isinferior(p, t); |
| 390 | } |
| 391 | |
| 392 | if (p != PROC_NULL) { |
| 393 | proc_rele(p); |
| 394 | } |
| 395 | if (t != PROC_NULL) { |
| 396 | proc_rele(p: t); |
| 397 | } |
| 398 | |
| 399 | return retval; |
| 400 | } |
| 401 | |
| 402 | /* |
| 403 | * Returns process identity of a given process. Calling this function is not |
| 404 | * racy for a current process or if a reference to the process is held. |
| 405 | */ |
| 406 | struct proc_ident |
| 407 | proc_ident(proc_t p) |
| 408 | { |
| 409 | struct proc_ident ident = { |
| 410 | .p_pid = proc_pid(p), |
| 411 | .p_uniqueid = proc_uniqueid(p), |
| 412 | .p_idversion = proc_pidversion(p), |
| 413 | }; |
| 414 | |
| 415 | return ident; |
| 416 | } |
| 417 | |
| 418 | proc_t |
| 419 | proc_find_ident(struct proc_ident const *ident) |
| 420 | { |
| 421 | proc_t proc = PROC_NULL; |
| 422 | |
| 423 | proc = proc_find(pid: ident->p_pid); |
| 424 | if (proc == PROC_NULL) { |
| 425 | return PROC_NULL; |
| 426 | } |
| 427 | |
| 428 | if (proc_uniqueid(proc) != ident->p_uniqueid || |
| 429 | proc_pidversion(proc) != ident->p_idversion) { |
| 430 | proc_rele(p: proc); |
| 431 | return PROC_NULL; |
| 432 | } |
| 433 | |
| 434 | return proc; |
| 435 | } |
| 436 | |
| 437 | void |
| 438 | uthread_reset_proc_refcount(uthread_t uth) |
| 439 | { |
| 440 | uth->uu_proc_refcount = 0; |
| 441 | |
| 442 | #if PROC_REF_DEBUG |
| 443 | if (proc_ref_tracking_disabled) { |
| 444 | return; |
| 445 | } |
| 446 | |
| 447 | struct uthread_proc_ref_info *upri = uth->uu_proc_ref_info; |
| 448 | uint32_t n = uth->uu_proc_ref_info->upri_pindex; |
| 449 | |
| 450 | uth->uu_proc_ref_info->upri_pindex = 0; |
| 451 | |
| 452 | if (n) { |
| 453 | for (unsigned i = 0; i < n; i++) { |
| 454 | btref_put(upri->upri_proc_stacks[i]); |
| 455 | } |
| 456 | bzero(upri->upri_proc_stacks, sizeof(btref_t) * n); |
| 457 | bzero(upri->upri_proc_ps, sizeof(proc_t) * n); |
| 458 | } |
| 459 | #endif |
| 460 | } |
| 461 | |
| 462 | #if PROC_REF_DEBUG |
| 463 | void |
| 464 | uthread_init_proc_refcount(uthread_t uth) |
| 465 | { |
| 466 | if (proc_ref_tracking_disabled) { |
| 467 | return; |
| 468 | } |
| 469 | |
| 470 | uth->uu_proc_ref_info = kalloc_type(struct uthread_proc_ref_info, |
| 471 | Z_ZERO | Z_WAITOK | Z_NOFAIL); |
| 472 | } |
| 473 | |
| 474 | void |
| 475 | uthread_destroy_proc_refcount(uthread_t uth) |
| 476 | { |
| 477 | if (proc_ref_tracking_disabled) { |
| 478 | return; |
| 479 | } |
| 480 | |
| 481 | struct uthread_proc_ref_info *upri = uth->uu_proc_ref_info; |
| 482 | uint32_t n = uth->uu_proc_ref_info->upri_pindex; |
| 483 | |
| 484 | for (unsigned i = 0; i < n; i++) { |
| 485 | btref_put(upri->upri_proc_stacks[i]); |
| 486 | } |
| 487 | |
| 488 | kfree_type(struct uthread_proc_ref_info, uth->uu_proc_ref_info); |
| 489 | } |
| 490 | |
| 491 | void |
| 492 | uthread_assert_zero_proc_refcount(uthread_t uth) |
| 493 | { |
| 494 | if (proc_ref_tracking_disabled) { |
| 495 | return; |
| 496 | } |
| 497 | |
| 498 | if (__improbable(uth->uu_proc_refcount != 0)) { |
| 499 | panic("Unexpected non zero uu_proc_refcount = %d (%p)" , |
| 500 | uth->uu_proc_refcount, uth); |
| 501 | } |
| 502 | } |
| 503 | #endif |
| 504 | |
| 505 | bool |
| 506 | proc_list_exited(proc_t p) |
| 507 | { |
| 508 | return os_ref_get_raw_mask(rc: &p->p_refcount) & P_REF_DEAD; |
| 509 | } |
| 510 | |
| 511 | #if CONFIG_DEBUG_SYSCALL_REJECTION |
| 512 | uint64_t |
| 513 | uthread_get_syscall_rejection_flags(void *uthread) |
| 514 | { |
| 515 | uthread_t uth = (uthread_t) uthread; |
| 516 | return uth->syscall_rejection_flags; |
| 517 | } |
| 518 | |
| 519 | uint64_t* |
| 520 | uthread_get_syscall_rejection_mask(void *uthread) |
| 521 | { |
| 522 | uthread_t uth = (uthread_t) uthread; |
| 523 | return uth->syscall_rejection_mask; |
| 524 | } |
| 525 | |
| 526 | uint64_t* |
| 527 | uthread_get_syscall_rejection_once_mask(void *uthread) |
| 528 | { |
| 529 | uthread_t uth = (uthread_t) uthread; |
| 530 | return uth->syscall_rejection_once_mask; |
| 531 | } |
| 532 | |
| 533 | bool |
| 534 | uthread_syscall_rejection_is_enabled(void *uthread) |
| 535 | { |
| 536 | uthread_t uth = (uthread_t) uthread; |
| 537 | return (debug_syscall_rejection_mode != 0) || (uth->syscall_rejection_flags & SYSCALL_REJECTION_FLAGS_FORCE_FATAL); |
| 538 | } |
| 539 | #endif /* CONFIG_DEBUG_SYSCALL_REJECTION */ |
| 540 | |
| 541 | #if PROC_REF_DEBUG |
| 542 | __attribute__((noinline)) |
| 543 | #endif /* PROC_REF_DEBUG */ |
| 544 | static void |
| 545 | record_procref(proc_t p __unused, int count) |
| 546 | { |
| 547 | uthread_t uth; |
| 548 | |
| 549 | uth = current_uthread(); |
| 550 | uth->uu_proc_refcount += count; |
| 551 | |
| 552 | #if PROC_REF_DEBUG |
| 553 | if (proc_ref_tracking_disabled) { |
| 554 | return; |
| 555 | } |
| 556 | struct uthread_proc_ref_info *upri = uth->uu_proc_ref_info; |
| 557 | |
| 558 | if (upri->upri_pindex < NUM_PROC_REFS_TO_TRACK) { |
| 559 | upri->upri_proc_stacks[upri->upri_pindex] = |
| 560 | btref_get(__builtin_frame_address(0), BTREF_GET_NOWAIT); |
| 561 | upri->upri_proc_ps[upri->upri_pindex] = p; |
| 562 | upri->upri_pindex++; |
| 563 | } |
| 564 | #endif /* PROC_REF_DEBUG */ |
| 565 | } |
| 566 | |
| 567 | /*! |
| 568 | * @function proc_ref_try_fast() |
| 569 | * |
| 570 | * @brief |
| 571 | * Tries to take a proc ref, unless it is in flux (being made, or dead). |
| 572 | * |
| 573 | * @returns |
| 574 | * - the new refcount value (including bits) on success, |
| 575 | * - 0 on failure. |
| 576 | */ |
| 577 | static inline uint32_t |
| 578 | proc_ref_try_fast(proc_t p) |
| 579 | { |
| 580 | uint32_t bits; |
| 581 | |
| 582 | proc_require(proc: p, flags: PROC_REQUIRE_ALLOW_ALL); |
| 583 | |
| 584 | bits = os_ref_retain_try_mask(&p->p_refcount, P_REF_BITS, |
| 585 | P_REF_NEW | P_REF_DEAD, NULL); |
| 586 | if (bits) { |
| 587 | record_procref(p, count: 1); |
| 588 | } |
| 589 | return bits; |
| 590 | } |
| 591 | |
| 592 | /*! |
| 593 | * @function proc_ref_wait() |
| 594 | * |
| 595 | * @brief |
| 596 | * Waits for the specified bits to clear, on the specified event. |
| 597 | */ |
| 598 | __attribute__((noinline)) |
| 599 | static void |
| 600 | proc_ref_wait(proc_t p, event_t event, proc_ref_bits_t mask, bool locked) |
| 601 | { |
| 602 | assert_wait(event, THREAD_UNINT | THREAD_WAIT_NOREPORT); |
| 603 | |
| 604 | if (os_ref_get_raw_mask(rc: &p->p_refcount) & mask) { |
| 605 | uthread_t uth = current_uthread(); |
| 606 | |
| 607 | if (locked) { |
| 608 | proc_list_unlock(); |
| 609 | } |
| 610 | uth->uu_wchan = event; |
| 611 | uth->uu_wmesg = "proc_refwait" ; |
| 612 | thread_block(THREAD_CONTINUE_NULL); |
| 613 | uth->uu_wchan = NULL; |
| 614 | uth->uu_wmesg = NULL; |
| 615 | if (locked) { |
| 616 | proc_list_lock(); |
| 617 | } |
| 618 | } else { |
| 619 | clear_wait(thread: current_thread(), THREAD_AWAKENED); |
| 620 | } |
| 621 | } |
| 622 | |
| 623 | /*! |
| 624 | * @function proc_ref_wait_for_exec() |
| 625 | * |
| 626 | * @brief |
| 627 | * Routine called by processes trying to acquire a ref while |
| 628 | * an exec is in flight. |
| 629 | * |
| 630 | * @discussion |
| 631 | * This function is called with a proc ref held on the proc, |
| 632 | * which will be given up until the @c P_REF_*_EXEC flags clear. |
| 633 | * |
| 634 | * @param p the proc, the caller owns a proc ref |
| 635 | * @param bits the result of @c proc_ref_try_fast() prior to calling this. |
| 636 | * @param locked whether the caller holds the @c proc_list_lock(). |
| 637 | */ |
| 638 | __attribute__((noinline)) |
| 639 | static proc_t |
| 640 | proc_ref_wait_for_exec(proc_t p, uint32_t bits, int locked) |
| 641 | { |
| 642 | const proc_ref_bits_t mask = P_REF_WILL_EXEC | P_REF_IN_EXEC; |
| 643 | |
| 644 | /* |
| 645 | * the proc is in the middle of exec, |
| 646 | * trade our ref for a "wait ref", |
| 647 | * and wait for the proc_refwake_did_exec() call. |
| 648 | * |
| 649 | * Note: it's very unlikely that we'd loop back into the wait, |
| 650 | * it would only happen if the target proc would be |
| 651 | * in exec again by the time we woke up. |
| 652 | */ |
| 653 | os_ref_retain_raw(&p->p_waitref, &p_refgrp); |
| 654 | |
| 655 | do { |
| 656 | proc_rele(p); |
| 657 | proc_ref_wait(p, event: &p->p_waitref, mask, locked); |
| 658 | bits = proc_ref_try_fast(p); |
| 659 | } while (__improbable(bits & mask)); |
| 660 | |
| 661 | proc_wait_release(p); |
| 662 | |
| 663 | return bits ? p : PROC_NULL; |
| 664 | } |
| 665 | |
| 666 | static inline bool |
| 667 | proc_ref_needs_wait_for_exec(uint32_t bits) |
| 668 | { |
| 669 | if (__probable((bits & (P_REF_WILL_EXEC | P_REF_IN_EXEC)) == 0)) { |
| 670 | return false; |
| 671 | } |
| 672 | |
| 673 | if (bits & P_REF_IN_EXEC) { |
| 674 | return true; |
| 675 | } |
| 676 | |
| 677 | /* |
| 678 | * procs can't have outstanding refs while execing. |
| 679 | * |
| 680 | * In order to achieve, that, proc_refdrain_will_exec() |
| 681 | * will drain outstanding references. It signals its intent |
| 682 | * with the P_REF_WILL_EXEC flag, and moves to P_REF_IN_EXEC |
| 683 | * when this is achieved. |
| 684 | * |
| 685 | * Most threads will block in proc_ref() when any of those |
| 686 | * flags is set. However, threads that already have |
| 687 | * an oustanding ref on this proc might want another |
| 688 | * before dropping them. To avoid deadlocks, we need |
| 689 | * to let threads with any oustanding reference take one |
| 690 | * when only P_REF_WILL_EXEC is set (which causes exec |
| 691 | * to be delayed). |
| 692 | * |
| 693 | * Note: the current thread will _always_ appear like it holds |
| 694 | * one ref due to having taken one speculatively. |
| 695 | */ |
| 696 | assert(current_uthread()->uu_proc_refcount >= 1); |
| 697 | return current_uthread()->uu_proc_refcount == 1; |
| 698 | } |
| 699 | |
| 700 | int |
| 701 | proc_rele(proc_t p) |
| 702 | { |
| 703 | uint32_t o_bits, n_bits; |
| 704 | |
| 705 | proc_require(proc: p, flags: PROC_REQUIRE_ALLOW_ALL); |
| 706 | |
| 707 | os_atomic_rmw_loop(&p->p_refcount, o_bits, n_bits, release, { |
| 708 | n_bits = o_bits - (1u << P_REF_BITS); |
| 709 | if ((n_bits >> P_REF_BITS) == 1) { |
| 710 | n_bits &= ~P_REF_DRAINING; |
| 711 | } |
| 712 | }); |
| 713 | record_procref(p, count: -1); |
| 714 | |
| 715 | /* |
| 716 | * p might be freed after this point. |
| 717 | */ |
| 718 | |
| 719 | if (__improbable((o_bits & P_REF_DRAINING) && !(n_bits & P_REF_DRAINING))) { |
| 720 | /* |
| 721 | * This wakeup can cause spurious ones, |
| 722 | * but proc_refdrain() can deal with those. |
| 723 | * |
| 724 | * Because the proc_zone memory is sequestered, |
| 725 | * this is safe to wakeup a possible "freed" address. |
| 726 | */ |
| 727 | wakeup(chan: &p->p_refcount); |
| 728 | } |
| 729 | return 0; |
| 730 | } |
| 731 | |
| 732 | bool |
| 733 | proc_is_shadow(proc_t p) |
| 734 | { |
| 735 | return os_ref_get_raw_mask(rc: &p->p_refcount) & P_REF_SHADOW; |
| 736 | } |
| 737 | |
| 738 | proc_t |
| 739 | proc_self(void) |
| 740 | { |
| 741 | proc_t p = current_proc(); |
| 742 | |
| 743 | /* |
| 744 | * Do not go through the logic of "wait for exec", it is meaningless. |
| 745 | * Only fail taking a ref for oneself if the proc is about to die. |
| 746 | */ |
| 747 | return proc_ref_try_fast(p) ? p : PROC_NULL; |
| 748 | } |
| 749 | |
| 750 | proc_t |
| 751 | proc_ref(proc_t p, int locked) |
| 752 | { |
| 753 | uint32_t bits; |
| 754 | |
| 755 | bits = proc_ref_try_fast(p); |
| 756 | if (__improbable(!bits)) { |
| 757 | return PROC_NULL; |
| 758 | } |
| 759 | |
| 760 | if (__improbable(proc_ref_needs_wait_for_exec(bits))) { |
| 761 | return proc_ref_wait_for_exec(p, bits, locked); |
| 762 | } |
| 763 | |
| 764 | return p; |
| 765 | } |
| 766 | |
| 767 | static void |
| 768 | proc_wait_free(smr_node_t node) |
| 769 | { |
| 770 | struct proc *p = __container_of(node, struct proc, p_smr_node); |
| 771 | |
| 772 | proc_release_proc_task_struct(proc: p); |
| 773 | } |
| 774 | |
| 775 | void |
| 776 | proc_wait_release(proc_t p) |
| 777 | { |
| 778 | if (__probable(os_ref_release_raw(&p->p_waitref, &p_refgrp) == 0)) { |
| 779 | smr_proc_task_call(&p->p_smr_node, proc_and_task_size, |
| 780 | proc_wait_free); |
| 781 | } |
| 782 | } |
| 783 | |
| 784 | proc_t |
| 785 | proc_find_zombref(int pid) |
| 786 | { |
| 787 | proc_t p; |
| 788 | |
| 789 | proc_list_lock(); |
| 790 | |
| 791 | again: |
| 792 | p = phash_find_locked(pid); |
| 793 | |
| 794 | /* should we bail? */ |
| 795 | if ((p == PROC_NULL) || !proc_list_exited(p)) { |
| 796 | proc_list_unlock(); |
| 797 | return PROC_NULL; |
| 798 | } |
| 799 | |
| 800 | /* If someone else is controlling the (unreaped) zombie - wait */ |
| 801 | if ((p->p_listflag & P_LIST_WAITING) != 0) { |
| 802 | (void)msleep(chan: &p->p_stat, mtx: &proc_list_mlock, PWAIT, wmesg: "waitcoll" , ts: 0); |
| 803 | goto again; |
| 804 | } |
| 805 | p->p_listflag |= P_LIST_WAITING; |
| 806 | |
| 807 | proc_list_unlock(); |
| 808 | |
| 809 | return p; |
| 810 | } |
| 811 | |
| 812 | void |
| 813 | proc_drop_zombref(proc_t p) |
| 814 | { |
| 815 | proc_list_lock(); |
| 816 | if ((p->p_listflag & P_LIST_WAITING) == P_LIST_WAITING) { |
| 817 | p->p_listflag &= ~P_LIST_WAITING; |
| 818 | wakeup(chan: &p->p_stat); |
| 819 | } |
| 820 | proc_list_unlock(); |
| 821 | } |
| 822 | |
| 823 | |
| 824 | void |
| 825 | proc_refdrain(proc_t p) |
| 826 | { |
| 827 | uint32_t bits = os_ref_get_raw_mask(rc: &p->p_refcount); |
| 828 | |
| 829 | assert(proc_list_exited(p)); |
| 830 | |
| 831 | while ((bits >> P_REF_BITS) > 1) { |
| 832 | if (os_atomic_cmpxchgv(&p->p_refcount, bits, |
| 833 | bits | P_REF_DRAINING, &bits, relaxed)) { |
| 834 | proc_ref_wait(p, event: &p->p_refcount, mask: P_REF_DRAINING, false); |
| 835 | } |
| 836 | } |
| 837 | } |
| 838 | |
| 839 | proc_t |
| 840 | proc_refdrain_will_exec(proc_t p) |
| 841 | { |
| 842 | const proc_ref_bits_t will_exec_mask = P_REF_WILL_EXEC | P_REF_DRAINING; |
| 843 | |
| 844 | /* |
| 845 | * All the calls to proc_ref will wait |
| 846 | * for the flag to get cleared before returning a ref. |
| 847 | * |
| 848 | * (except for the case documented in proc_ref_needs_wait_for_exec()). |
| 849 | */ |
| 850 | |
| 851 | if (p == initproc) { |
| 852 | /* Do not wait in ref drain for launchd exec */ |
| 853 | os_atomic_or(&p->p_refcount, P_REF_IN_EXEC, relaxed); |
| 854 | } else { |
| 855 | for (;;) { |
| 856 | uint32_t o_ref, n_ref; |
| 857 | |
| 858 | os_atomic_rmw_loop(&p->p_refcount, o_ref, n_ref, relaxed, { |
| 859 | if ((o_ref >> P_REF_BITS) == 1) { |
| 860 | /* |
| 861 | * We drained successfully, |
| 862 | * move on to P_REF_IN_EXEC |
| 863 | */ |
| 864 | n_ref = o_ref & ~will_exec_mask; |
| 865 | n_ref |= P_REF_IN_EXEC; |
| 866 | } else { |
| 867 | /* |
| 868 | * Outstanding refs exit, |
| 869 | * mark our desire to stall |
| 870 | * proc_ref() callers with |
| 871 | * P_REF_WILL_EXEC. |
| 872 | */ |
| 873 | n_ref = o_ref | will_exec_mask; |
| 874 | } |
| 875 | }); |
| 876 | |
| 877 | if (n_ref & P_REF_IN_EXEC) { |
| 878 | break; |
| 879 | } |
| 880 | |
| 881 | proc_ref_wait(p, event: &p->p_refcount, mask: P_REF_DRAINING, false); |
| 882 | } |
| 883 | } |
| 884 | |
| 885 | /* Return a ref to the caller */ |
| 886 | os_ref_retain_mask(&p->p_refcount, P_REF_BITS, NULL); |
| 887 | record_procref(p, count: 1); |
| 888 | |
| 889 | return p; |
| 890 | } |
| 891 | |
| 892 | void |
| 893 | proc_refwake_did_exec(proc_t p) |
| 894 | { |
| 895 | os_atomic_andnot(&p->p_refcount, P_REF_IN_EXEC, release); |
| 896 | wakeup(chan: &p->p_waitref); |
| 897 | } |
| 898 | |
| 899 | void |
| 900 | proc_ref_hold_proc_task_struct(proc_t proc) |
| 901 | { |
| 902 | os_atomic_or(&proc->p_refcount, P_REF_PROC_HOLD, relaxed); |
| 903 | } |
| 904 | |
| 905 | static void |
| 906 | proc_free(proc_t proc) |
| 907 | { |
| 908 | proc_ro_t proc_ro = proc->p_proc_ro; |
| 909 | kauth_cred_t cred; |
| 910 | |
| 911 | if (proc_ro) { |
| 912 | cred = smr_serialized_load(&proc_ro->p_ucred); |
| 913 | |
| 914 | kauth_cred_set(&cred, NOCRED); |
| 915 | zfree_ro(ZONE_ID_PROC_RO, proc_ro); |
| 916 | } |
| 917 | zfree(proc_task_zone, proc); |
| 918 | } |
| 919 | |
| 920 | void |
| 921 | proc_release_proc_task_struct(proc_t proc) |
| 922 | { |
| 923 | uint32_t old_ref = os_atomic_andnot_orig(&proc->p_refcount, P_REF_PROC_HOLD, relaxed); |
| 924 | if ((old_ref & P_REF_TASK_HOLD) == 0) { |
| 925 | proc_free(proc); |
| 926 | } |
| 927 | } |
| 928 | |
| 929 | void |
| 930 | task_ref_hold_proc_task_struct(task_t task) |
| 931 | { |
| 932 | proc_t proc_from_task = task_get_proc_raw(task); |
| 933 | os_atomic_or(&proc_from_task->p_refcount, P_REF_TASK_HOLD, relaxed); |
| 934 | } |
| 935 | |
| 936 | void |
| 937 | task_release_proc_task_struct(task_t task) |
| 938 | { |
| 939 | proc_t proc_from_task = task_get_proc_raw(task); |
| 940 | uint32_t old_ref = os_atomic_andnot_orig(&proc_from_task->p_refcount, P_REF_TASK_HOLD, relaxed); |
| 941 | |
| 942 | if ((old_ref & P_REF_PROC_HOLD) == 0) { |
| 943 | proc_free(proc: proc_from_task); |
| 944 | } |
| 945 | } |
| 946 | |
| 947 | proc_t |
| 948 | proc_parentholdref(proc_t p) |
| 949 | { |
| 950 | proc_t parent = PROC_NULL; |
| 951 | proc_t pp; |
| 952 | |
| 953 | proc_list_lock(); |
| 954 | loop: |
| 955 | pp = p->p_pptr; |
| 956 | if ((pp == PROC_NULL) || (pp->p_stat == SZOMB) || ((pp->p_listflag & (P_LIST_CHILDDRSTART | P_LIST_CHILDDRAINED)) == (P_LIST_CHILDDRSTART | P_LIST_CHILDDRAINED))) { |
| 957 | parent = PROC_NULL; |
| 958 | goto out; |
| 959 | } |
| 960 | |
| 961 | if ((pp->p_listflag & (P_LIST_CHILDDRSTART | P_LIST_CHILDDRAINED)) == P_LIST_CHILDDRSTART) { |
| 962 | pp->p_listflag |= P_LIST_CHILDDRWAIT; |
| 963 | msleep(chan: &pp->p_childrencnt, mtx: &proc_list_mlock, pri: 0, wmesg: "proc_parent" , ts: 0); |
| 964 | goto loop; |
| 965 | } |
| 966 | |
| 967 | if ((pp->p_listflag & (P_LIST_CHILDDRSTART | P_LIST_CHILDDRAINED)) == 0) { |
| 968 | pp->p_parentref++; |
| 969 | parent = pp; |
| 970 | goto out; |
| 971 | } |
| 972 | |
| 973 | out: |
| 974 | proc_list_unlock(); |
| 975 | return parent; |
| 976 | } |
| 977 | int |
| 978 | proc_parentdropref(proc_t p, int listlocked) |
| 979 | { |
| 980 | if (listlocked == 0) { |
| 981 | proc_list_lock(); |
| 982 | } |
| 983 | |
| 984 | if (p->p_parentref > 0) { |
| 985 | p->p_parentref--; |
| 986 | if ((p->p_parentref == 0) && ((p->p_listflag & P_LIST_PARENTREFWAIT) == P_LIST_PARENTREFWAIT)) { |
| 987 | p->p_listflag &= ~P_LIST_PARENTREFWAIT; |
| 988 | wakeup(chan: &p->p_parentref); |
| 989 | } |
| 990 | } else { |
| 991 | panic("proc_parentdropref -ve ref" ); |
| 992 | } |
| 993 | if (listlocked == 0) { |
| 994 | proc_list_unlock(); |
| 995 | } |
| 996 | |
| 997 | return 0; |
| 998 | } |
| 999 | |
| 1000 | void |
| 1001 | proc_childdrainstart(proc_t p) |
| 1002 | { |
| 1003 | #if __PROC_INTERNAL_DEBUG |
| 1004 | if ((p->p_listflag & P_LIST_CHILDDRSTART) == P_LIST_CHILDDRSTART) { |
| 1005 | panic("proc_childdrainstart: childdrain already started" ); |
| 1006 | } |
| 1007 | #endif |
| 1008 | p->p_listflag |= P_LIST_CHILDDRSTART; |
| 1009 | /* wait for all that hold parentrefs to drop */ |
| 1010 | while (p->p_parentref > 0) { |
| 1011 | p->p_listflag |= P_LIST_PARENTREFWAIT; |
| 1012 | msleep(chan: &p->p_parentref, mtx: &proc_list_mlock, pri: 0, wmesg: "proc_childdrainstart" , ts: 0); |
| 1013 | } |
| 1014 | } |
| 1015 | |
| 1016 | |
| 1017 | void |
| 1018 | proc_childdrainend(proc_t p) |
| 1019 | { |
| 1020 | #if __PROC_INTERNAL_DEBUG |
| 1021 | if (p->p_childrencnt > 0) { |
| 1022 | panic("exiting: children stil hanging around" ); |
| 1023 | } |
| 1024 | #endif |
| 1025 | p->p_listflag |= P_LIST_CHILDDRAINED; |
| 1026 | if ((p->p_listflag & (P_LIST_CHILDLKWAIT | P_LIST_CHILDDRWAIT)) != 0) { |
| 1027 | p->p_listflag &= ~(P_LIST_CHILDLKWAIT | P_LIST_CHILDDRWAIT); |
| 1028 | wakeup(chan: &p->p_childrencnt); |
| 1029 | } |
| 1030 | } |
| 1031 | |
| 1032 | void |
| 1033 | proc_checkdeadrefs(__unused proc_t p) |
| 1034 | { |
| 1035 | uint32_t bits; |
| 1036 | |
| 1037 | bits = os_ref_release_raw_mask(&p->p_refcount, P_REF_BITS, NULL); |
| 1038 | bits &= ~(P_REF_SHADOW | P_REF_PROC_HOLD | P_REF_TASK_HOLD); |
| 1039 | if (bits != P_REF_DEAD) { |
| 1040 | panic("proc being freed and unexpected refcount %p:%d:0x%x" , p, |
| 1041 | bits >> P_REF_BITS, bits & P_REF_MASK); |
| 1042 | } |
| 1043 | #if __PROC_INTERNAL_DEBUG |
| 1044 | if (p->p_childrencnt != 0) { |
| 1045 | panic("proc being freed and pending children cnt %p:%d" , p, p->p_childrencnt); |
| 1046 | } |
| 1047 | if (p->p_parentref != 0) { |
| 1048 | panic("proc being freed and pending parentrefs %p:%d" , p, p->p_parentref); |
| 1049 | } |
| 1050 | #endif |
| 1051 | } |
| 1052 | |
| 1053 | |
| 1054 | __attribute__((always_inline, visibility("hidden" ))) |
| 1055 | void |
| 1056 | proc_require(proc_t proc, proc_require_flags_t flags) |
| 1057 | { |
| 1058 | if ((flags & PROC_REQUIRE_ALLOW_NULL) && proc == PROC_NULL) { |
| 1059 | return; |
| 1060 | } |
| 1061 | zone_id_require(zone_id: ZONE_ID_PROC_TASK, elem_size: proc_and_task_size, addr: proc); |
| 1062 | } |
| 1063 | |
| 1064 | pid_t |
| 1065 | proc_getpid(proc_t p) |
| 1066 | { |
| 1067 | if (p == kernproc) { |
| 1068 | return 0; |
| 1069 | } |
| 1070 | |
| 1071 | return p->p_pid; |
| 1072 | } |
| 1073 | |
| 1074 | int |
| 1075 | proc_pid(proc_t p) |
| 1076 | { |
| 1077 | if (p != NULL) { |
| 1078 | proc_require(proc: p, flags: PROC_REQUIRE_ALLOW_ALL); |
| 1079 | return proc_getpid(p); |
| 1080 | } |
| 1081 | return -1; |
| 1082 | } |
| 1083 | |
| 1084 | int |
| 1085 | proc_ppid(proc_t p) |
| 1086 | { |
| 1087 | if (p != NULL) { |
| 1088 | proc_require(proc: p, flags: PROC_REQUIRE_ALLOW_ALL); |
| 1089 | return p->p_ppid; |
| 1090 | } |
| 1091 | return -1; |
| 1092 | } |
| 1093 | |
| 1094 | int |
| 1095 | proc_original_ppid(proc_t p) |
| 1096 | { |
| 1097 | if (p != NULL) { |
| 1098 | proc_require(proc: p, flags: PROC_REQUIRE_ALLOW_ALL); |
| 1099 | return p->p_original_ppid; |
| 1100 | } |
| 1101 | return -1; |
| 1102 | } |
| 1103 | |
| 1104 | int |
| 1105 | proc_starttime(proc_t p, struct timeval *tv) |
| 1106 | { |
| 1107 | if (p != NULL && tv != NULL) { |
| 1108 | tv->tv_sec = p->p_start.tv_sec; |
| 1109 | tv->tv_usec = p->p_start.tv_usec; |
| 1110 | return 0; |
| 1111 | } |
| 1112 | return EINVAL; |
| 1113 | } |
| 1114 | |
| 1115 | int |
| 1116 | proc_selfpid(void) |
| 1117 | { |
| 1118 | return proc_getpid(p: current_proc()); |
| 1119 | } |
| 1120 | |
| 1121 | int |
| 1122 | proc_selfppid(void) |
| 1123 | { |
| 1124 | return current_proc()->p_ppid; |
| 1125 | } |
| 1126 | |
| 1127 | uint64_t |
| 1128 | proc_selfcsflags(void) |
| 1129 | { |
| 1130 | return proc_getcsflags(current_proc()); |
| 1131 | } |
| 1132 | |
| 1133 | int |
| 1134 | proc_csflags(proc_t p, uint64_t *flags) |
| 1135 | { |
| 1136 | if (p && flags) { |
| 1137 | proc_require(proc: p, flags: PROC_REQUIRE_ALLOW_ALL); |
| 1138 | *flags = proc_getcsflags(p); |
| 1139 | return 0; |
| 1140 | } |
| 1141 | return EINVAL; |
| 1142 | } |
| 1143 | |
| 1144 | boolean_t |
| 1145 | proc_is_simulated(const proc_t p) |
| 1146 | { |
| 1147 | #ifdef XNU_TARGET_OS_OSX |
| 1148 | if (p != NULL) { |
| 1149 | switch (proc_platform(p)) { |
| 1150 | case PLATFORM_IOSSIMULATOR: |
| 1151 | case PLATFORM_TVOSSIMULATOR: |
| 1152 | case PLATFORM_WATCHOSSIMULATOR: |
| 1153 | return TRUE; |
| 1154 | default: |
| 1155 | return FALSE; |
| 1156 | } |
| 1157 | } |
| 1158 | #else /* !XNU_TARGET_OS_OSX */ |
| 1159 | (void)p; |
| 1160 | #endif |
| 1161 | return FALSE; |
| 1162 | } |
| 1163 | |
| 1164 | uint32_t |
| 1165 | proc_platform(const proc_t p) |
| 1166 | { |
| 1167 | if (p != NULL) { |
| 1168 | return proc_get_ro(p)->p_platform_data.p_platform; |
| 1169 | } |
| 1170 | return (uint32_t)-1; |
| 1171 | } |
| 1172 | |
| 1173 | uint32_t |
| 1174 | proc_min_sdk(proc_t p) |
| 1175 | { |
| 1176 | if (p != NULL) { |
| 1177 | return proc_get_ro(p)->p_platform_data.p_min_sdk; |
| 1178 | } |
| 1179 | return (uint32_t)-1; |
| 1180 | } |
| 1181 | |
| 1182 | uint32_t |
| 1183 | proc_sdk(proc_t p) |
| 1184 | { |
| 1185 | if (p != NULL) { |
| 1186 | return proc_get_ro(p)->p_platform_data.p_sdk; |
| 1187 | } |
| 1188 | return (uint32_t)-1; |
| 1189 | } |
| 1190 | |
| 1191 | void |
| 1192 | proc_setplatformdata(proc_t p, uint32_t platform, uint32_t min_sdk, uint32_t sdk) |
| 1193 | { |
| 1194 | proc_ro_t ro; |
| 1195 | struct proc_platform_ro_data platform_data; |
| 1196 | |
| 1197 | ro = proc_get_ro(p); |
| 1198 | platform_data = ro->p_platform_data; |
| 1199 | platform_data.p_platform = platform; |
| 1200 | platform_data.p_min_sdk = min_sdk; |
| 1201 | platform_data.p_sdk = sdk; |
| 1202 | |
| 1203 | zalloc_ro_update_field(ZONE_ID_PROC_RO, ro, p_platform_data, &platform_data); |
| 1204 | } |
| 1205 | |
| 1206 | #if CONFIG_DTRACE |
| 1207 | int |
| 1208 | dtrace_proc_selfpid(void) |
| 1209 | { |
| 1210 | return proc_selfpid(); |
| 1211 | } |
| 1212 | |
| 1213 | int |
| 1214 | dtrace_proc_selfppid(void) |
| 1215 | { |
| 1216 | return proc_selfppid(); |
| 1217 | } |
| 1218 | |
| 1219 | uid_t |
| 1220 | dtrace_proc_selfruid(void) |
| 1221 | { |
| 1222 | return current_proc()->p_ruid; |
| 1223 | } |
| 1224 | #endif /* CONFIG_DTRACE */ |
| 1225 | |
| 1226 | /*! |
| 1227 | * @function proc_parent() |
| 1228 | * |
| 1229 | * @brief |
| 1230 | * Returns a ref on the parent of @c p. |
| 1231 | * |
| 1232 | * @discussion |
| 1233 | * Returns a reference on the parent, or @c PROC_NULL |
| 1234 | * if both @c p and its parent are zombies. |
| 1235 | * |
| 1236 | * If the parent is currently dying, then this function waits |
| 1237 | * for the situation to be resolved. |
| 1238 | * |
| 1239 | * This function never returns @c PROC_NULL if @c p isn't |
| 1240 | * a zombie (@c p_stat is @c SZOMB) yet. |
| 1241 | */ |
| 1242 | proc_t |
| 1243 | proc_parent(proc_t p) |
| 1244 | { |
| 1245 | proc_t parent; |
| 1246 | proc_t pp; |
| 1247 | |
| 1248 | proc_list_lock(); |
| 1249 | |
| 1250 | while (1) { |
| 1251 | pp = p->p_pptr; |
| 1252 | parent = proc_ref(p: pp, true); |
| 1253 | /* Check if we got a proc ref and it is still the parent */ |
| 1254 | if (parent != PROC_NULL) { |
| 1255 | if (parent == p->p_pptr) { |
| 1256 | /* |
| 1257 | * We have a ref on the parent and it is still |
| 1258 | * our parent, return the ref |
| 1259 | */ |
| 1260 | proc_list_unlock(); |
| 1261 | return parent; |
| 1262 | } |
| 1263 | |
| 1264 | /* |
| 1265 | * Our parent changed while we slept on proc_ref, |
| 1266 | * drop the ref on old parent and retry. |
| 1267 | */ |
| 1268 | proc_rele(p: parent); |
| 1269 | continue; |
| 1270 | } |
| 1271 | |
| 1272 | if (pp != p->p_pptr) { |
| 1273 | /* |
| 1274 | * We didn't get a ref, but parent changed from what |
| 1275 | * we last saw before we slept in proc_ref, try again |
| 1276 | * with new parent. |
| 1277 | */ |
| 1278 | continue; |
| 1279 | } |
| 1280 | |
| 1281 | if ((pp->p_listflag & P_LIST_CHILDDRAINED) == 0) { |
| 1282 | /* Parent did not change, but we also did not get a |
| 1283 | * ref on parent, sleep if the parent has not drained |
| 1284 | * its children and then retry. |
| 1285 | */ |
| 1286 | pp->p_listflag |= P_LIST_CHILDLKWAIT; |
| 1287 | msleep(chan: &pp->p_childrencnt, mtx: &proc_list_mlock, pri: 0, wmesg: "proc_parent" , ts: 0); |
| 1288 | continue; |
| 1289 | } |
| 1290 | |
| 1291 | /* Parent has died and drained its children and we still |
| 1292 | * point to it, return NULL. |
| 1293 | */ |
| 1294 | proc_list_unlock(); |
| 1295 | return PROC_NULL; |
| 1296 | } |
| 1297 | } |
| 1298 | |
| 1299 | static boolean_t |
| 1300 | proc_parent_is_currentproc(proc_t p) |
| 1301 | { |
| 1302 | boolean_t ret = FALSE; |
| 1303 | |
| 1304 | proc_list_lock(); |
| 1305 | if (p->p_pptr == current_proc()) { |
| 1306 | ret = TRUE; |
| 1307 | } |
| 1308 | |
| 1309 | proc_list_unlock(); |
| 1310 | return ret; |
| 1311 | } |
| 1312 | |
| 1313 | void |
| 1314 | proc_name(int pid, char * buf, int size) |
| 1315 | { |
| 1316 | proc_t p; |
| 1317 | |
| 1318 | if (size <= 0) { |
| 1319 | return; |
| 1320 | } |
| 1321 | |
| 1322 | bzero(s: buf, n: size); |
| 1323 | |
| 1324 | if ((p = proc_find(pid)) != PROC_NULL) { |
| 1325 | strlcpy(dst: buf, src: &p->p_comm[0], n: size); |
| 1326 | proc_rele(p); |
| 1327 | } |
| 1328 | } |
| 1329 | |
| 1330 | void |
| 1331 | proc_name_kdp(proc_t p, char * buf, int size) |
| 1332 | { |
| 1333 | if (p == PROC_NULL) { |
| 1334 | return; |
| 1335 | } |
| 1336 | |
| 1337 | if ((size_t)size > sizeof(p->p_comm)) { |
| 1338 | strlcpy(dst: buf, src: &p->p_name[0], MIN((int)sizeof(p->p_name), size)); |
| 1339 | } else { |
| 1340 | strlcpy(dst: buf, src: &p->p_comm[0], MIN((int)sizeof(p->p_comm), size)); |
| 1341 | } |
| 1342 | } |
| 1343 | |
| 1344 | boolean_t |
| 1345 | proc_binary_uuid_kdp(task_t task, uuid_t uuid) |
| 1346 | { |
| 1347 | proc_t p = get_bsdtask_info(task); |
| 1348 | if (p == PROC_NULL) { |
| 1349 | return FALSE; |
| 1350 | } |
| 1351 | |
| 1352 | proc_getexecutableuuid(p, uuid, sizeof(uuid_t)); |
| 1353 | |
| 1354 | return TRUE; |
| 1355 | } |
| 1356 | |
| 1357 | int |
| 1358 | proc_threadname_kdp(void * uth, char * buf, size_t size) |
| 1359 | { |
| 1360 | if (size < MAXTHREADNAMESIZE) { |
| 1361 | /* this is really just a protective measure for the future in |
| 1362 | * case the thread name size in stackshot gets out of sync with |
| 1363 | * the BSD max thread name size. Note that bsd_getthreadname |
| 1364 | * doesn't take input buffer size into account. */ |
| 1365 | return -1; |
| 1366 | } |
| 1367 | |
| 1368 | if (uth != NULL) { |
| 1369 | bsd_getthreadname(uth, buffer: buf); |
| 1370 | } |
| 1371 | return 0; |
| 1372 | } |
| 1373 | |
| 1374 | |
| 1375 | /* note that this function is generally going to be called from stackshot, |
| 1376 | * and the arguments will be coming from a struct which is declared packed |
| 1377 | * thus the input arguments will in general be unaligned. We have to handle |
| 1378 | * that here. */ |
| 1379 | void |
| 1380 | proc_starttime_kdp(void *p, unaligned_u64 *tv_sec, unaligned_u64 *tv_usec, unaligned_u64 *abstime) |
| 1381 | { |
| 1382 | proc_t pp = (proc_t)p; |
| 1383 | if (pp != PROC_NULL) { |
| 1384 | if (tv_sec != NULL) { |
| 1385 | *tv_sec = pp->p_start.tv_sec; |
| 1386 | } |
| 1387 | if (tv_usec != NULL) { |
| 1388 | *tv_usec = pp->p_start.tv_usec; |
| 1389 | } |
| 1390 | if (abstime != NULL) { |
| 1391 | if (pp->p_stats != NULL) { |
| 1392 | *abstime = pp->p_stats->ps_start; |
| 1393 | } else { |
| 1394 | *abstime = 0; |
| 1395 | } |
| 1396 | } |
| 1397 | } |
| 1398 | } |
| 1399 | |
| 1400 | void |
| 1401 | proc_archinfo_kdp(void* p, cpu_type_t* cputype, cpu_subtype_t* cpusubtype) |
| 1402 | { |
| 1403 | proc_t pp = (proc_t)p; |
| 1404 | if (pp != PROC_NULL) { |
| 1405 | *cputype = pp->p_cputype; |
| 1406 | *cpusubtype = pp->p_cpusubtype; |
| 1407 | } |
| 1408 | } |
| 1409 | |
| 1410 | char * |
| 1411 | proc_name_address(void *p) |
| 1412 | { |
| 1413 | return &((proc_t)p)->p_comm[0]; |
| 1414 | } |
| 1415 | |
| 1416 | char * |
| 1417 | proc_longname_address(void *p) |
| 1418 | { |
| 1419 | return &((proc_t)p)->p_name[0]; |
| 1420 | } |
| 1421 | |
| 1422 | char * |
| 1423 | proc_best_name(proc_t p) |
| 1424 | { |
| 1425 | if (p->p_name[0] != '\0') { |
| 1426 | return &p->p_name[0]; |
| 1427 | } |
| 1428 | return &p->p_comm[0]; |
| 1429 | } |
| 1430 | |
| 1431 | void |
| 1432 | proc_selfname(char * buf, int size) |
| 1433 | { |
| 1434 | proc_t p; |
| 1435 | |
| 1436 | if ((p = current_proc()) != (proc_t)0) { |
| 1437 | strlcpy(dst: buf, src: &p->p_name[0], n: size); |
| 1438 | } |
| 1439 | } |
| 1440 | |
| 1441 | void |
| 1442 | proc_signal(int pid, int signum) |
| 1443 | { |
| 1444 | proc_t p; |
| 1445 | |
| 1446 | if ((p = proc_find(pid)) != PROC_NULL) { |
| 1447 | psignal(p, sig: signum); |
| 1448 | proc_rele(p); |
| 1449 | } |
| 1450 | } |
| 1451 | |
| 1452 | int |
| 1453 | proc_issignal(int pid, sigset_t mask) |
| 1454 | { |
| 1455 | proc_t p; |
| 1456 | int error = 0; |
| 1457 | |
| 1458 | if ((p = proc_find(pid)) != PROC_NULL) { |
| 1459 | error = proc_pendingsignals(p, mask); |
| 1460 | proc_rele(p); |
| 1461 | } |
| 1462 | |
| 1463 | return error; |
| 1464 | } |
| 1465 | |
| 1466 | int |
| 1467 | proc_noremotehang(proc_t p) |
| 1468 | { |
| 1469 | int retval = 0; |
| 1470 | |
| 1471 | if (p) { |
| 1472 | retval = p->p_flag & P_NOREMOTEHANG; |
| 1473 | } |
| 1474 | return retval? 1: 0; |
| 1475 | } |
| 1476 | |
| 1477 | int |
| 1478 | proc_exiting(proc_t p) |
| 1479 | { |
| 1480 | int retval = 0; |
| 1481 | |
| 1482 | if (p) { |
| 1483 | retval = p->p_lflag & P_LEXIT; |
| 1484 | } |
| 1485 | return retval? 1: 0; |
| 1486 | } |
| 1487 | |
| 1488 | int |
| 1489 | proc_in_teardown(proc_t p) |
| 1490 | { |
| 1491 | int retval = 0; |
| 1492 | |
| 1493 | if (p) { |
| 1494 | retval = p->p_lflag & P_LPEXIT; |
| 1495 | } |
| 1496 | return retval? 1: 0; |
| 1497 | } |
| 1498 | |
| 1499 | int |
| 1500 | proc_lvfork(proc_t p __unused) |
| 1501 | { |
| 1502 | return 0; |
| 1503 | } |
| 1504 | |
| 1505 | int |
| 1506 | proc_increment_ru_oublock(proc_t p, long *origvalp) |
| 1507 | { |
| 1508 | long origval; |
| 1509 | |
| 1510 | if (p && p->p_stats) { |
| 1511 | origval = OSIncrementAtomicLong(address: &p->p_stats->p_ru.ru_oublock); |
| 1512 | if (origvalp) { |
| 1513 | *origvalp = origval; |
| 1514 | } |
| 1515 | return 0; |
| 1516 | } |
| 1517 | |
| 1518 | return EINVAL; |
| 1519 | } |
| 1520 | |
| 1521 | int |
| 1522 | proc_isabortedsignal(proc_t p) |
| 1523 | { |
| 1524 | if ((p != kernproc) && current_thread_aborted() && |
| 1525 | (!(p->p_acflag & AXSIG) || (p->exit_thread != current_thread()) || |
| 1526 | (p->p_sigacts.ps_sig < 1) || (p->p_sigacts.ps_sig >= NSIG) || |
| 1527 | !hassigprop(sig: p->p_sigacts.ps_sig, SA_CORE))) { |
| 1528 | return 1; |
| 1529 | } |
| 1530 | |
| 1531 | return 0; |
| 1532 | } |
| 1533 | |
| 1534 | int |
| 1535 | proc_forcequota(proc_t p) |
| 1536 | { |
| 1537 | int retval = 0; |
| 1538 | |
| 1539 | if (p) { |
| 1540 | retval = p->p_flag & P_FORCEQUOTA; |
| 1541 | } |
| 1542 | return retval? 1: 0; |
| 1543 | } |
| 1544 | |
| 1545 | int |
| 1546 | proc_suser(proc_t p) |
| 1547 | { |
| 1548 | int error; |
| 1549 | |
| 1550 | smr_proc_task_enter(); |
| 1551 | error = suser(cred: proc_ucred_smr(p), acflag: &p->p_acflag); |
| 1552 | smr_proc_task_leave(); |
| 1553 | return error; |
| 1554 | } |
| 1555 | |
| 1556 | task_t |
| 1557 | proc_task(proc_t proc) |
| 1558 | { |
| 1559 | task_t task_from_proc = proc_get_task_raw(proc); |
| 1560 | return (proc->p_lflag & P_LHASTASK) ? task_from_proc : NULL; |
| 1561 | } |
| 1562 | |
| 1563 | void |
| 1564 | proc_set_task(proc_t proc, task_t task) |
| 1565 | { |
| 1566 | task_t task_from_proc = proc_get_task_raw(proc); |
| 1567 | if (task == NULL) { |
| 1568 | proc->p_lflag &= ~P_LHASTASK; |
| 1569 | } else { |
| 1570 | if (task != task_from_proc) { |
| 1571 | panic("proc_set_task trying to set random task %p" , task); |
| 1572 | } |
| 1573 | proc->p_lflag |= P_LHASTASK; |
| 1574 | } |
| 1575 | } |
| 1576 | |
| 1577 | task_t |
| 1578 | proc_get_task_raw(proc_t proc) |
| 1579 | { |
| 1580 | return (task_t)((uintptr_t)proc + proc_struct_size); |
| 1581 | } |
| 1582 | |
| 1583 | proc_t |
| 1584 | task_get_proc_raw(task_t task) |
| 1585 | { |
| 1586 | return (proc_t)((uintptr_t)task - proc_struct_size); |
| 1587 | } |
| 1588 | |
| 1589 | /* |
| 1590 | * Obtain the first thread in a process |
| 1591 | * |
| 1592 | * XXX This is a bad thing to do; it exists predominantly to support the |
| 1593 | * XXX use of proc_t's in places that should really be using |
| 1594 | * XXX thread_t's instead. This maintains historical behaviour, but really |
| 1595 | * XXX needs an audit of the context (proxy vs. not) to clean up. |
| 1596 | */ |
| 1597 | thread_t |
| 1598 | proc_thread(proc_t proc) |
| 1599 | { |
| 1600 | LCK_MTX_ASSERT(&proc->p_mlock, LCK_MTX_ASSERT_OWNED); |
| 1601 | |
| 1602 | uthread_t uth = TAILQ_FIRST(&proc->p_uthlist); |
| 1603 | |
| 1604 | if (uth != NULL) { |
| 1605 | return get_machthread(uth); |
| 1606 | } |
| 1607 | |
| 1608 | return NULL; |
| 1609 | } |
| 1610 | |
| 1611 | kauth_cred_t |
| 1612 | proc_ucred_unsafe(proc_t p) |
| 1613 | { |
| 1614 | kauth_cred_t cred = smr_serialized_load(&proc_get_ro(p)->p_ucred); |
| 1615 | |
| 1616 | return kauth_cred_require(cred); |
| 1617 | } |
| 1618 | |
| 1619 | kauth_cred_t |
| 1620 | proc_ucred_smr(proc_t p) |
| 1621 | { |
| 1622 | assert(smr_entered(&smr_proc_task)); |
| 1623 | return proc_ucred_unsafe(p); |
| 1624 | } |
| 1625 | |
| 1626 | kauth_cred_t |
| 1627 | proc_ucred_locked(proc_t p) |
| 1628 | { |
| 1629 | LCK_MTX_ASSERT(&p->p_ucred_mlock, LCK_ASSERT_OWNED); |
| 1630 | return proc_ucred_unsafe(p); |
| 1631 | } |
| 1632 | |
| 1633 | struct uthread * |
| 1634 | current_uthread(void) |
| 1635 | { |
| 1636 | return get_bsdthread_info(current_thread()); |
| 1637 | } |
| 1638 | |
| 1639 | |
| 1640 | int |
| 1641 | proc_is64bit(proc_t p) |
| 1642 | { |
| 1643 | return IS_64BIT_PROCESS(p); |
| 1644 | } |
| 1645 | |
| 1646 | int |
| 1647 | proc_is64bit_data(proc_t p) |
| 1648 | { |
| 1649 | assert(proc_task(p)); |
| 1650 | return (int)task_get_64bit_data(task: proc_task(proc: p)); |
| 1651 | } |
| 1652 | |
| 1653 | int |
| 1654 | proc_isinitproc(proc_t p) |
| 1655 | { |
| 1656 | if (initproc == NULL) { |
| 1657 | return 0; |
| 1658 | } |
| 1659 | return p == initproc; |
| 1660 | } |
| 1661 | |
| 1662 | int |
| 1663 | proc_pidversion(proc_t p) |
| 1664 | { |
| 1665 | return proc_get_ro(p)->p_idversion; |
| 1666 | } |
| 1667 | |
| 1668 | void |
| 1669 | proc_setpidversion(proc_t p, int idversion) |
| 1670 | { |
| 1671 | zalloc_ro_update_field(ZONE_ID_PROC_RO, proc_get_ro(p), p_idversion, |
| 1672 | &idversion); |
| 1673 | } |
| 1674 | |
| 1675 | uint32_t |
| 1676 | proc_persona_id(proc_t p) |
| 1677 | { |
| 1678 | return (uint32_t)persona_id_from_proc(p); |
| 1679 | } |
| 1680 | |
| 1681 | uint32_t |
| 1682 | proc_getuid(proc_t p) |
| 1683 | { |
| 1684 | return p->p_uid; |
| 1685 | } |
| 1686 | |
| 1687 | uint32_t |
| 1688 | proc_getgid(proc_t p) |
| 1689 | { |
| 1690 | return p->p_gid; |
| 1691 | } |
| 1692 | |
| 1693 | uint64_t |
| 1694 | proc_uniqueid(proc_t p) |
| 1695 | { |
| 1696 | if (p == kernproc) { |
| 1697 | return 0; |
| 1698 | } |
| 1699 | |
| 1700 | return proc_get_ro(p)->p_uniqueid; |
| 1701 | } |
| 1702 | |
| 1703 | uint64_t proc_uniqueid_task(void *p_arg, void *t); |
| 1704 | /* |
| 1705 | * During exec, two tasks point at the proc. This function is used |
| 1706 | * to gives tasks a unique ID; we make the matching task have the |
| 1707 | * proc's uniqueid, and any other task gets the high-bit flipped. |
| 1708 | * (We need to try to avoid returning UINT64_MAX, which is the |
| 1709 | * which is the uniqueid of a task without a proc. (e.g. while exiting)) |
| 1710 | * |
| 1711 | * Only used by get_task_uniqueid(); do not add additional callers. |
| 1712 | */ |
| 1713 | uint64_t |
| 1714 | proc_uniqueid_task(void *p_arg, void *t __unused) |
| 1715 | { |
| 1716 | proc_t p = p_arg; |
| 1717 | uint64_t uniqueid = proc_uniqueid(p); |
| 1718 | return uniqueid ^ (__probable(!proc_is_shadow(p)) ? 0 : (1ull << 63)); |
| 1719 | } |
| 1720 | |
| 1721 | uint64_t |
| 1722 | proc_puniqueid(proc_t p) |
| 1723 | { |
| 1724 | return p->p_puniqueid; |
| 1725 | } |
| 1726 | |
| 1727 | void |
| 1728 | proc_coalitionids(__unused proc_t p, __unused uint64_t ids[COALITION_NUM_TYPES]) |
| 1729 | { |
| 1730 | #if CONFIG_COALITIONS |
| 1731 | task_coalition_ids(task: proc_task(proc: p), ids); |
| 1732 | #else |
| 1733 | memset(ids, 0, sizeof(uint64_t[COALITION_NUM_TYPES])); |
| 1734 | #endif |
| 1735 | return; |
| 1736 | } |
| 1737 | |
| 1738 | uint64_t |
| 1739 | proc_was_throttled(proc_t p) |
| 1740 | { |
| 1741 | return p->was_throttled; |
| 1742 | } |
| 1743 | |
| 1744 | uint64_t |
| 1745 | proc_did_throttle(proc_t p) |
| 1746 | { |
| 1747 | return p->did_throttle; |
| 1748 | } |
| 1749 | |
| 1750 | int |
| 1751 | proc_getcdhash(proc_t p, unsigned char *cdhash) |
| 1752 | { |
| 1753 | if (p == kernproc) { |
| 1754 | return EINVAL; |
| 1755 | } |
| 1756 | return vn_getcdhash(vp: p->p_textvp, offset: p->p_textoff, cdhash); |
| 1757 | } |
| 1758 | |
| 1759 | uint64_t |
| 1760 | proc_getcsflags(proc_t p) |
| 1761 | { |
| 1762 | return proc_get_ro(p)->p_csflags; |
| 1763 | } |
| 1764 | |
| 1765 | /* This variant runs in stackshot context and must not take locks. */ |
| 1766 | uint64_t |
| 1767 | proc_getcsflags_kdp(void * p) |
| 1768 | { |
| 1769 | proc_t proc = (proc_t)p; |
| 1770 | if (p == PROC_NULL) { |
| 1771 | return 0; |
| 1772 | } |
| 1773 | return proc_getcsflags(p: proc); |
| 1774 | } |
| 1775 | |
| 1776 | void |
| 1777 | proc_csflags_update(proc_t p, uint64_t flags) |
| 1778 | { |
| 1779 | uint32_t csflags = (uint32_t)flags; |
| 1780 | |
| 1781 | if (p != kernproc) { |
| 1782 | zalloc_ro_update_field(ZONE_ID_PROC_RO, proc_get_ro(p), |
| 1783 | p_csflags, &csflags); |
| 1784 | } |
| 1785 | } |
| 1786 | |
| 1787 | void |
| 1788 | proc_csflags_set(proc_t p, uint64_t flags) |
| 1789 | { |
| 1790 | proc_csflags_update(p, flags: proc_getcsflags(p) | (uint32_t)flags); |
| 1791 | } |
| 1792 | |
| 1793 | void |
| 1794 | proc_csflags_clear(proc_t p, uint64_t flags) |
| 1795 | { |
| 1796 | proc_csflags_update(p, flags: proc_getcsflags(p) & ~(uint32_t)flags); |
| 1797 | } |
| 1798 | |
| 1799 | uint8_t * |
| 1800 | proc_syscall_filter_mask(proc_t p) |
| 1801 | { |
| 1802 | return proc_get_ro(p)->syscall_filter_mask; |
| 1803 | } |
| 1804 | |
| 1805 | void |
| 1806 | proc_syscall_filter_mask_set(proc_t p, uint8_t *mask) |
| 1807 | { |
| 1808 | zalloc_ro_update_field(ZONE_ID_PROC_RO, proc_get_ro(p), |
| 1809 | syscall_filter_mask, &mask); |
| 1810 | } |
| 1811 | |
| 1812 | int |
| 1813 | proc_exitstatus(proc_t p) |
| 1814 | { |
| 1815 | return p->p_xstat & 0xffff; |
| 1816 | } |
| 1817 | |
| 1818 | bool |
| 1819 | proc_is_zombie(proc_t p) |
| 1820 | { |
| 1821 | return proc_list_exited(p); |
| 1822 | } |
| 1823 | |
| 1824 | void |
| 1825 | proc_setexecutableuuid(proc_t p, const unsigned char *uuid) |
| 1826 | { |
| 1827 | memcpy(dst: p->p_uuid, src: uuid, n: sizeof(p->p_uuid)); |
| 1828 | } |
| 1829 | |
| 1830 | const unsigned char * |
| 1831 | proc_executableuuid_addr(proc_t p) |
| 1832 | { |
| 1833 | return &p->p_uuid[0]; |
| 1834 | } |
| 1835 | |
| 1836 | void |
| 1837 | proc_getexecutableuuid(proc_t p, unsigned char *uuidbuf, unsigned long size) |
| 1838 | { |
| 1839 | if (size >= sizeof(uuid_t)) { |
| 1840 | memcpy(dst: uuidbuf, src: proc_executableuuid_addr(p), n: sizeof(uuid_t)); |
| 1841 | } |
| 1842 | } |
| 1843 | |
| 1844 | void |
| 1845 | proc_getresponsibleuuid(proc_t p, unsigned char *uuidbuf, unsigned long size) |
| 1846 | { |
| 1847 | if (size >= sizeof(uuid_t)) { |
| 1848 | memcpy(dst: uuidbuf, src: p->p_responsible_uuid, n: sizeof(uuid_t)); |
| 1849 | } |
| 1850 | } |
| 1851 | |
| 1852 | void |
| 1853 | proc_setresponsibleuuid(proc_t p, unsigned char *uuidbuf, unsigned long size) |
| 1854 | { |
| 1855 | if (p != NULL && uuidbuf != NULL && size >= sizeof(uuid_t)) { |
| 1856 | memcpy(dst: p->p_responsible_uuid, src: uuidbuf, n: sizeof(uuid_t)); |
| 1857 | } |
| 1858 | return; |
| 1859 | } |
| 1860 | |
| 1861 | /* Return vnode for executable with an iocount. Must be released with vnode_put() */ |
| 1862 | vnode_t |
| 1863 | proc_getexecutablevnode(proc_t p) |
| 1864 | { |
| 1865 | vnode_t tvp = p->p_textvp; |
| 1866 | |
| 1867 | if (tvp != NULLVP) { |
| 1868 | if (vnode_getwithref(vp: tvp) == 0) { |
| 1869 | return tvp; |
| 1870 | } |
| 1871 | } |
| 1872 | |
| 1873 | return NULLVP; |
| 1874 | } |
| 1875 | |
| 1876 | /* |
| 1877 | * Similar to proc_getexecutablevnode() but returns NULLVP if the vnode is |
| 1878 | * being reclaimed rather than blocks until reclaim is done. |
| 1879 | */ |
| 1880 | vnode_t |
| 1881 | proc_getexecutablevnode_noblock(proc_t p) |
| 1882 | { |
| 1883 | vnode_t tvp = p->p_textvp; |
| 1884 | |
| 1885 | if (tvp != NULLVP) { |
| 1886 | if (vnode_getwithref_noblock(vp: tvp) == 0) { |
| 1887 | return tvp; |
| 1888 | } |
| 1889 | } |
| 1890 | |
| 1891 | return NULLVP; |
| 1892 | } |
| 1893 | |
| 1894 | int |
| 1895 | proc_gettty(proc_t p, vnode_t *vp) |
| 1896 | { |
| 1897 | struct session *procsp; |
| 1898 | struct pgrp *pg; |
| 1899 | int err = EINVAL; |
| 1900 | |
| 1901 | if (!p || !vp) { |
| 1902 | return EINVAL; |
| 1903 | } |
| 1904 | |
| 1905 | if ((pg = proc_pgrp(p, &procsp)) != PGRP_NULL) { |
| 1906 | session_lock(sess: procsp); |
| 1907 | vnode_t ttyvp = procsp->s_ttyvp; |
| 1908 | int ttyvid = procsp->s_ttyvid; |
| 1909 | if (ttyvp) { |
| 1910 | vnode_hold(vp: ttyvp); |
| 1911 | } |
| 1912 | session_unlock(sess: procsp); |
| 1913 | |
| 1914 | if (ttyvp) { |
| 1915 | if (vnode_getwithvid(ttyvp, ttyvid) == 0) { |
| 1916 | *vp = ttyvp; |
| 1917 | err = 0; |
| 1918 | } |
| 1919 | vnode_drop(vp: ttyvp); |
| 1920 | } else { |
| 1921 | err = ENOENT; |
| 1922 | } |
| 1923 | |
| 1924 | pgrp_rele(pgrp: pg); |
| 1925 | } |
| 1926 | |
| 1927 | return err; |
| 1928 | } |
| 1929 | |
| 1930 | int |
| 1931 | proc_gettty_dev(proc_t p, dev_t *devp) |
| 1932 | { |
| 1933 | struct pgrp *pg; |
| 1934 | dev_t dev = NODEV; |
| 1935 | |
| 1936 | if ((pg = proc_pgrp(p, NULL)) != PGRP_NULL) { |
| 1937 | dev = os_atomic_load(&pg->pg_session->s_ttydev, relaxed); |
| 1938 | pgrp_rele(pgrp: pg); |
| 1939 | } |
| 1940 | |
| 1941 | if (dev == NODEV) { |
| 1942 | return EINVAL; |
| 1943 | } |
| 1944 | |
| 1945 | *devp = dev; |
| 1946 | return 0; |
| 1947 | } |
| 1948 | |
| 1949 | int |
| 1950 | proc_selfexecutableargs(uint8_t *buf, size_t *buflen) |
| 1951 | { |
| 1952 | proc_t p = current_proc(); |
| 1953 | |
| 1954 | // buflen must always be provided |
| 1955 | if (buflen == NULL) { |
| 1956 | return EINVAL; |
| 1957 | } |
| 1958 | |
| 1959 | // If a buf is provided, there must be at least enough room to fit argc |
| 1960 | if (buf && *buflen < sizeof(p->p_argc)) { |
| 1961 | return EINVAL; |
| 1962 | } |
| 1963 | |
| 1964 | if (!p->user_stack) { |
| 1965 | return EINVAL; |
| 1966 | } |
| 1967 | |
| 1968 | if (buf == NULL) { |
| 1969 | *buflen = p->p_argslen + sizeof(p->p_argc); |
| 1970 | return 0; |
| 1971 | } |
| 1972 | |
| 1973 | // Copy in argc to the first 4 bytes |
| 1974 | memcpy(dst: buf, src: &p->p_argc, n: sizeof(p->p_argc)); |
| 1975 | |
| 1976 | if (*buflen > sizeof(p->p_argc) && p->p_argslen > 0) { |
| 1977 | // See memory layout comment in kern_exec.c:exec_copyout_strings() |
| 1978 | // We want to copy starting from `p_argslen` bytes away from top of stack |
| 1979 | return copyin(p->user_stack - p->p_argslen, |
| 1980 | buf + sizeof(p->p_argc), |
| 1981 | MIN(p->p_argslen, *buflen - sizeof(p->p_argc))); |
| 1982 | } else { |
| 1983 | return 0; |
| 1984 | } |
| 1985 | } |
| 1986 | |
| 1987 | off_t |
| 1988 | proc_getexecutableoffset(proc_t p) |
| 1989 | { |
| 1990 | return p->p_textoff; |
| 1991 | } |
| 1992 | |
| 1993 | void |
| 1994 | bsd_set_dependency_capable(task_t task) |
| 1995 | { |
| 1996 | proc_t p = get_bsdtask_info(task); |
| 1997 | |
| 1998 | if (p) { |
| 1999 | OSBitOrAtomic(P_DEPENDENCY_CAPABLE, &p->p_flag); |
| 2000 | } |
| 2001 | } |
| 2002 | |
| 2003 | |
| 2004 | #ifndef __arm__ |
| 2005 | int |
| 2006 | IS_64BIT_PROCESS(proc_t p) |
| 2007 | { |
| 2008 | if (p && (p->p_flag & P_LP64)) { |
| 2009 | return 1; |
| 2010 | } else { |
| 2011 | return 0; |
| 2012 | } |
| 2013 | } |
| 2014 | #endif |
| 2015 | |
| 2016 | SMRH_TRAITS_DEFINE_SCALAR(pid_hash_traits, struct proc, p_pid, p_hash, |
| 2017 | .domain = &smr_proc_task); |
| 2018 | |
| 2019 | /* |
| 2020 | * Locate a process by number |
| 2021 | */ |
| 2022 | proc_t |
| 2023 | phash_find_locked(pid_t pid) |
| 2024 | { |
| 2025 | smrh_key_t key = SMRH_SCALAR_KEY(pid); |
| 2026 | |
| 2027 | LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED); |
| 2028 | |
| 2029 | if (!pid) { |
| 2030 | return kernproc; |
| 2031 | } |
| 2032 | |
| 2033 | return smr_hash_serialized_find(&pid_hash, key, &pid_hash_traits); |
| 2034 | } |
| 2035 | |
| 2036 | void |
| 2037 | phash_replace_locked(struct proc *old_proc, struct proc *new_proc) |
| 2038 | { |
| 2039 | LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED); |
| 2040 | |
| 2041 | smr_hash_serialized_replace(&pid_hash, |
| 2042 | &old_proc->p_hash, &new_proc->p_hash, &pid_hash_traits); |
| 2043 | } |
| 2044 | |
| 2045 | void |
| 2046 | phash_insert_locked(struct proc *p) |
| 2047 | { |
| 2048 | LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED); |
| 2049 | |
| 2050 | smr_hash_serialized_insert(&pid_hash, &p->p_hash, &pid_hash_traits); |
| 2051 | } |
| 2052 | |
| 2053 | void |
| 2054 | phash_remove_locked(struct proc *p) |
| 2055 | { |
| 2056 | LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED); |
| 2057 | |
| 2058 | smr_hash_serialized_remove(&pid_hash, &p->p_hash, &pid_hash_traits); |
| 2059 | } |
| 2060 | |
| 2061 | proc_t |
| 2062 | proc_find_noref_smr(int pid) |
| 2063 | { |
| 2064 | smrh_key_t key = SMRH_SCALAR_KEY(pid); |
| 2065 | |
| 2066 | if (__improbable(pid == 0)) { |
| 2067 | return kernproc; |
| 2068 | } |
| 2069 | |
| 2070 | return smr_hash_entered_find(&pid_hash, key, &pid_hash_traits); |
| 2071 | } |
| 2072 | |
| 2073 | proc_t |
| 2074 | proc_find(int pid) |
| 2075 | { |
| 2076 | smrh_key_t key = SMRH_SCALAR_KEY(pid); |
| 2077 | proc_t p; |
| 2078 | uint32_t bits; |
| 2079 | bool shadow_proc = false; |
| 2080 | |
| 2081 | LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_NOTOWNED); |
| 2082 | |
| 2083 | if (!pid) { |
| 2084 | return proc_ref(p: kernproc, false); |
| 2085 | } |
| 2086 | |
| 2087 | retry: |
| 2088 | p = PROC_NULL; |
| 2089 | bits = 0; |
| 2090 | shadow_proc = false; |
| 2091 | |
| 2092 | smr_proc_task_enter(); |
| 2093 | p = smr_hash_entered_find(&pid_hash, key, &pid_hash_traits); |
| 2094 | if (p) { |
| 2095 | bits = proc_ref_try_fast(p); |
| 2096 | shadow_proc = !!proc_is_shadow(p); |
| 2097 | } |
| 2098 | smr_proc_task_leave(); |
| 2099 | |
| 2100 | /* Retry if the proc is a shadow proc */ |
| 2101 | if (shadow_proc) { |
| 2102 | if (bits) { |
| 2103 | proc_rele(p); |
| 2104 | } |
| 2105 | goto retry; |
| 2106 | } |
| 2107 | |
| 2108 | if (__improbable(!bits)) { |
| 2109 | return PROC_NULL; |
| 2110 | } |
| 2111 | |
| 2112 | if (__improbable(proc_ref_needs_wait_for_exec(bits))) { |
| 2113 | p = proc_ref_wait_for_exec(p, bits, false); |
| 2114 | /* |
| 2115 | * Retry if exec was successful since the old proc |
| 2116 | * would have become a shadow proc and might be in |
| 2117 | * middle of exiting. |
| 2118 | */ |
| 2119 | if (p == PROC_NULL || proc_is_shadow(p)) { |
| 2120 | if (p != PROC_NULL) { |
| 2121 | proc_rele(p); |
| 2122 | } |
| 2123 | goto retry; |
| 2124 | } |
| 2125 | } |
| 2126 | |
| 2127 | return p; |
| 2128 | } |
| 2129 | |
| 2130 | proc_t |
| 2131 | proc_find_locked(int pid) |
| 2132 | { |
| 2133 | proc_t p = PROC_NULL; |
| 2134 | |
| 2135 | retry: |
| 2136 | p = phash_find_locked(pid); |
| 2137 | if (p != PROC_NULL) { |
| 2138 | uint32_t bits; |
| 2139 | |
| 2140 | assert(!proc_is_shadow(p)); |
| 2141 | |
| 2142 | bits = proc_ref_try_fast(p); |
| 2143 | if (__improbable(!bits)) { |
| 2144 | return PROC_NULL; |
| 2145 | } |
| 2146 | |
| 2147 | if (__improbable(proc_ref_needs_wait_for_exec(bits))) { |
| 2148 | p = proc_ref_wait_for_exec(p, bits, true); |
| 2149 | /* |
| 2150 | * Retry if exec was successful since the old proc |
| 2151 | * would have become a shadow proc and might be in |
| 2152 | * middle of exiting. |
| 2153 | */ |
| 2154 | if (p == PROC_NULL || proc_is_shadow(p)) { |
| 2155 | if (p != PROC_NULL) { |
| 2156 | proc_rele(p); |
| 2157 | } |
| 2158 | goto retry; |
| 2159 | } |
| 2160 | } |
| 2161 | } |
| 2162 | |
| 2163 | return p; |
| 2164 | } |
| 2165 | |
| 2166 | proc_t |
| 2167 | proc_findthread(thread_t thread) |
| 2168 | { |
| 2169 | proc_t p = PROC_NULL; |
| 2170 | |
| 2171 | proc_list_lock(); |
| 2172 | { |
| 2173 | p = (proc_t)(get_bsdthreadtask_info(thread)); |
| 2174 | } |
| 2175 | p = proc_ref(p, true); |
| 2176 | proc_list_unlock(); |
| 2177 | return p; |
| 2178 | } |
| 2179 | |
| 2180 | |
| 2181 | /* |
| 2182 | * Locate a zombie by PID |
| 2183 | */ |
| 2184 | __private_extern__ proc_t |
| 2185 | pzfind(pid_t pid) |
| 2186 | { |
| 2187 | proc_t p; |
| 2188 | |
| 2189 | |
| 2190 | proc_list_lock(); |
| 2191 | |
| 2192 | LIST_FOREACH(p, &zombproc, p_list) { |
| 2193 | if (proc_getpid(p) == pid && !proc_is_shadow(p)) { |
| 2194 | break; |
| 2195 | } |
| 2196 | } |
| 2197 | |
| 2198 | proc_list_unlock(); |
| 2199 | |
| 2200 | return p; |
| 2201 | } |
| 2202 | |
| 2203 | /* |
| 2204 | * Acquire a pgrp ref, if and only if the pgrp is non empty. |
| 2205 | */ |
| 2206 | static inline bool |
| 2207 | pg_ref_try(struct pgrp *pgrp) |
| 2208 | { |
| 2209 | return os_ref_retain_try_mask(&pgrp->pg_refcount, PGRP_REF_BITS, |
| 2210 | PGRP_REF_EMPTY, &p_refgrp); |
| 2211 | } |
| 2212 | |
| 2213 | static bool |
| 2214 | pgrp_hash_obj_try_get(void *pgrp) |
| 2215 | { |
| 2216 | return pg_ref_try(pgrp); |
| 2217 | } |
| 2218 | /* |
| 2219 | * Unconditionally acquire a pgrp ref, |
| 2220 | * regardless of whether the pgrp is empty or not. |
| 2221 | */ |
| 2222 | static inline struct pgrp * |
| 2223 | pg_ref(struct pgrp *pgrp) |
| 2224 | { |
| 2225 | os_ref_retain_mask(&pgrp->pg_refcount, PGRP_REF_BITS, &p_refgrp); |
| 2226 | return pgrp; |
| 2227 | } |
| 2228 | |
| 2229 | SMRH_TRAITS_DEFINE_SCALAR(pgrp_hash_traits, struct pgrp, pg_id, pg_hash, |
| 2230 | .domain = &smr_proc_task, |
| 2231 | .obj_try_get = pgrp_hash_obj_try_get); |
| 2232 | |
| 2233 | /* |
| 2234 | * Locate a process group by number |
| 2235 | */ |
| 2236 | bool |
| 2237 | pghash_exists_locked(pid_t pgid) |
| 2238 | { |
| 2239 | smrh_key_t key = SMRH_SCALAR_KEY(pgid); |
| 2240 | |
| 2241 | LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED); |
| 2242 | |
| 2243 | return smr_hash_serialized_find(&pgrp_hash, key, &pgrp_hash_traits); |
| 2244 | } |
| 2245 | |
| 2246 | void |
| 2247 | pghash_insert_locked(struct pgrp *pgrp) |
| 2248 | { |
| 2249 | LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED); |
| 2250 | |
| 2251 | smr_hash_serialized_insert(&pgrp_hash, &pgrp->pg_hash, |
| 2252 | &pgrp_hash_traits); |
| 2253 | } |
| 2254 | |
| 2255 | static void |
| 2256 | pghash_remove_locked(struct pgrp *pgrp) |
| 2257 | { |
| 2258 | LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED); |
| 2259 | |
| 2260 | smr_hash_serialized_remove(&pgrp_hash, &pgrp->pg_hash, |
| 2261 | &pgrp_hash_traits); |
| 2262 | } |
| 2263 | |
| 2264 | struct pgrp * |
| 2265 | pgrp_find(pid_t pgid) |
| 2266 | { |
| 2267 | smrh_key_t key = SMRH_SCALAR_KEY(pgid); |
| 2268 | |
| 2269 | LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_NOTOWNED); |
| 2270 | |
| 2271 | return smr_hash_get(&pgrp_hash, key, &pgrp_hash_traits); |
| 2272 | } |
| 2273 | |
| 2274 | /* consumes one ref from pgrp */ |
| 2275 | static void |
| 2276 | pgrp_add_member(struct pgrp *pgrp, struct proc *parent, struct proc *p) |
| 2277 | { |
| 2278 | LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED); |
| 2279 | |
| 2280 | pgrp_lock(pgrp); |
| 2281 | if (LIST_EMPTY(&pgrp->pg_members)) { |
| 2282 | os_atomic_andnot(&pgrp->pg_refcount, PGRP_REF_EMPTY, relaxed); |
| 2283 | } |
| 2284 | if (parent != PROC_NULL) { |
| 2285 | assert(pgrp == smr_serialized_load(&parent->p_pgrp)); |
| 2286 | } |
| 2287 | |
| 2288 | LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); |
| 2289 | pgrp_unlock(pgrp); |
| 2290 | |
| 2291 | p->p_pgrpid = pgrp->pg_id; |
| 2292 | p->p_sessionid = pgrp->pg_session->s_sid; |
| 2293 | smr_serialized_store(&p->p_pgrp, pgrp); |
| 2294 | } |
| 2295 | |
| 2296 | /* returns one ref from pgrp */ |
| 2297 | static void |
| 2298 | pgrp_del_member(struct pgrp *pgrp, struct proc *p) |
| 2299 | { |
| 2300 | LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED); |
| 2301 | |
| 2302 | pgrp_lock(pgrp); |
| 2303 | LIST_REMOVE(p, p_pglist); |
| 2304 | if (LIST_EMPTY(&pgrp->pg_members)) { |
| 2305 | os_atomic_or(&pgrp->pg_refcount, PGRP_REF_EMPTY, relaxed); |
| 2306 | } |
| 2307 | pgrp_unlock(pgrp); |
| 2308 | } |
| 2309 | |
| 2310 | void |
| 2311 | pgrp_rele(struct pgrp * pgrp) |
| 2312 | { |
| 2313 | if (pgrp == PGRP_NULL) { |
| 2314 | return; |
| 2315 | } |
| 2316 | |
| 2317 | if (os_ref_release_mask(&pgrp->pg_refcount, PGRP_REF_BITS, &p_refgrp) == 0) { |
| 2318 | pgrp_destroy(pgrp); |
| 2319 | } |
| 2320 | } |
| 2321 | |
| 2322 | struct session * |
| 2323 | session_alloc(proc_t leader) |
| 2324 | { |
| 2325 | struct session *sess; |
| 2326 | |
| 2327 | sess = zalloc_flags(session_zone, Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 2328 | lck_mtx_init(lck: &sess->s_mlock, grp: &proc_mlock_grp, attr: &proc_lck_attr); |
| 2329 | sess->s_leader = leader; |
| 2330 | sess->s_sid = proc_getpid(p: leader); |
| 2331 | sess->s_ttypgrpid = NO_PID; |
| 2332 | os_atomic_init(&sess->s_ttydev, NODEV); |
| 2333 | os_ref_init_mask(&sess->s_refcount, SESSION_REF_BITS, |
| 2334 | &p_refgrp, S_DEFAULT); |
| 2335 | |
| 2336 | return sess; |
| 2337 | } |
| 2338 | |
| 2339 | struct tty * |
| 2340 | session_set_tty_locked(struct session *sessp, struct tty *tp) |
| 2341 | { |
| 2342 | struct tty *old; |
| 2343 | |
| 2344 | LCK_MTX_ASSERT(&sessp->s_mlock, LCK_MTX_ASSERT_OWNED); |
| 2345 | |
| 2346 | old = sessp->s_ttyp; |
| 2347 | ttyhold(tp); |
| 2348 | sessp->s_ttyp = tp; |
| 2349 | os_atomic_store(&sessp->s_ttydev, tp->t_dev, relaxed); |
| 2350 | |
| 2351 | return old; |
| 2352 | } |
| 2353 | |
| 2354 | struct tty * |
| 2355 | session_clear_tty_locked(struct session *sessp) |
| 2356 | { |
| 2357 | struct tty *tp = sessp->s_ttyp; |
| 2358 | |
| 2359 | LCK_MTX_ASSERT(&sessp->s_mlock, LCK_MTX_ASSERT_OWNED); |
| 2360 | sessp->s_ttyvp = NULLVP; |
| 2361 | sessp->s_ttyvid = 0; |
| 2362 | sessp->s_ttyp = TTY_NULL; |
| 2363 | sessp->s_ttypgrpid = NO_PID; |
| 2364 | os_atomic_store(&sessp->s_ttydev, NODEV, relaxed); |
| 2365 | |
| 2366 | return tp; |
| 2367 | } |
| 2368 | |
| 2369 | __attribute__((noinline)) |
| 2370 | static void |
| 2371 | session_destroy(struct session *sess) |
| 2372 | { |
| 2373 | proc_list_lock(); |
| 2374 | LIST_REMOVE(sess, s_hash); |
| 2375 | proc_list_unlock(); |
| 2376 | |
| 2377 | /* |
| 2378 | * Either the TTY was closed, |
| 2379 | * or proc_exit() destroyed it when the leader went away |
| 2380 | */ |
| 2381 | assert(sess->s_ttyp == TTY_NULL); |
| 2382 | |
| 2383 | lck_mtx_destroy(lck: &sess->s_mlock, grp: &proc_mlock_grp); |
| 2384 | zfree(session_zone, sess); |
| 2385 | } |
| 2386 | |
| 2387 | struct session * |
| 2388 | session_ref(struct session *sess) |
| 2389 | { |
| 2390 | os_ref_retain_mask(&sess->s_refcount, SESSION_REF_BITS, &p_refgrp); |
| 2391 | return sess; |
| 2392 | } |
| 2393 | |
| 2394 | void |
| 2395 | session_rele(struct session *sess) |
| 2396 | { |
| 2397 | if (os_ref_release_mask(&sess->s_refcount, SESSION_REF_BITS, &p_refgrp) == 0) { |
| 2398 | session_destroy(sess); |
| 2399 | } |
| 2400 | } |
| 2401 | |
| 2402 | |
| 2403 | /* |
| 2404 | * Make a new process ready to become a useful member of society by making it |
| 2405 | * visible in all the right places and initialize its own lists to empty. |
| 2406 | * |
| 2407 | * Parameters: parent The parent of the process to insert |
| 2408 | * child The child process to insert |
| 2409 | * in_exec The child process is in exec |
| 2410 | * |
| 2411 | * Returns: (void) |
| 2412 | * |
| 2413 | * Notes: Insert a child process into the parents children list, assign |
| 2414 | * the child the parent process pointer and PPID of the parent... |
| 2415 | */ |
| 2416 | void |
| 2417 | pinsertchild(proc_t parent, proc_t child, bool in_exec) |
| 2418 | { |
| 2419 | LIST_INIT(&child->p_children); |
| 2420 | proc_t sibling = parent; |
| 2421 | |
| 2422 | /* For exec case, new proc is not a child of old proc, but its replacement */ |
| 2423 | if (in_exec) { |
| 2424 | parent = proc_parent(p: parent); |
| 2425 | assert(parent != PROC_NULL); |
| 2426 | |
| 2427 | /* Copy the ptrace flags from sibling */ |
| 2428 | proc_lock(sibling); |
| 2429 | child->p_oppid = sibling->p_oppid; |
| 2430 | child->p_lflag |= (sibling->p_lflag & (P_LTRACED | P_LSIGEXC | P_LNOATTACH)); |
| 2431 | proc_unlock(sibling); |
| 2432 | } |
| 2433 | |
| 2434 | proc_list_lock(); |
| 2435 | |
| 2436 | child->p_pptr = parent; |
| 2437 | child->p_ppid = proc_getpid(p: parent); |
| 2438 | child->p_original_ppid = in_exec ? sibling->p_original_ppid : proc_getpid(p: parent); |
| 2439 | child->p_puniqueid = proc_uniqueid(p: parent); |
| 2440 | child->p_xhighbits = 0; |
| 2441 | #if CONFIG_MEMORYSTATUS |
| 2442 | memorystatus_add(p: child, TRUE); |
| 2443 | #endif |
| 2444 | |
| 2445 | /* If the parent is initproc and p_original pid is not 1, then set reparent flag */ |
| 2446 | if (in_exec && parent == initproc && child->p_original_ppid != 1) { |
| 2447 | child->p_listflag |= P_LIST_DEADPARENT; |
| 2448 | } |
| 2449 | |
| 2450 | parent->p_childrencnt++; |
| 2451 | LIST_INSERT_HEAD(&parent->p_children, child, p_sibling); |
| 2452 | |
| 2453 | LIST_INSERT_HEAD(&allproc, child, p_list); |
| 2454 | /* mark the completion of proc creation */ |
| 2455 | os_atomic_andnot(&child->p_refcount, P_REF_NEW, relaxed); |
| 2456 | |
| 2457 | proc_list_unlock(); |
| 2458 | if (in_exec) { |
| 2459 | proc_rele(p: parent); |
| 2460 | } |
| 2461 | } |
| 2462 | |
| 2463 | /* |
| 2464 | * Reparent all children of old proc to new proc. |
| 2465 | * |
| 2466 | * Parameters: old process Old process. |
| 2467 | * new process New process. |
| 2468 | * |
| 2469 | * Returns: None. |
| 2470 | */ |
| 2471 | void |
| 2472 | p_reparentallchildren(proc_t old_proc, proc_t new_proc) |
| 2473 | { |
| 2474 | proc_t child; |
| 2475 | |
| 2476 | LIST_INIT(&new_proc->p_children); |
| 2477 | |
| 2478 | /* Wait for parent ref to drop */ |
| 2479 | proc_childdrainstart(p: old_proc); |
| 2480 | |
| 2481 | /* Reparent child from old proc to new proc */ |
| 2482 | while ((child = old_proc->p_children.lh_first) != NULL) { |
| 2483 | LIST_REMOVE(child, p_sibling); |
| 2484 | old_proc->p_childrencnt--; |
| 2485 | child->p_pptr = new_proc; |
| 2486 | LIST_INSERT_HEAD(&new_proc->p_children, child, p_sibling); |
| 2487 | new_proc->p_childrencnt++; |
| 2488 | } |
| 2489 | |
| 2490 | new_proc->si_pid = old_proc->si_pid; |
| 2491 | new_proc->si_status = old_proc->si_status; |
| 2492 | new_proc->si_code = old_proc->si_code; |
| 2493 | new_proc->si_uid = old_proc->si_uid; |
| 2494 | |
| 2495 | proc_childdrainend(p: old_proc); |
| 2496 | } |
| 2497 | |
| 2498 | /* |
| 2499 | * Move p to a new or existing process group (and session) |
| 2500 | * |
| 2501 | * Returns: 0 Success |
| 2502 | * ESRCH No such process |
| 2503 | */ |
| 2504 | int |
| 2505 | enterpgrp(proc_t p, pid_t pgid, int mksess) |
| 2506 | { |
| 2507 | struct pgrp *pgrp; |
| 2508 | struct pgrp *mypgrp; |
| 2509 | struct session *procsp; |
| 2510 | |
| 2511 | pgrp = pgrp_find(pgid); |
| 2512 | mypgrp = proc_pgrp(p, &procsp); |
| 2513 | |
| 2514 | #if DIAGNOSTIC |
| 2515 | if (pgrp != NULL && mksess) { /* firewalls */ |
| 2516 | panic("enterpgrp: setsid into non-empty pgrp" ); |
| 2517 | } |
| 2518 | if (SESS_LEADER(p, mypgrp->pg_session)) { |
| 2519 | panic("enterpgrp: session leader attempted setpgrp" ); |
| 2520 | } |
| 2521 | #endif |
| 2522 | if (pgrp == PGRP_NULL) { |
| 2523 | struct session *sess; |
| 2524 | pid_t savepid = proc_getpid(p); |
| 2525 | proc_t np = PROC_NULL; |
| 2526 | |
| 2527 | /* |
| 2528 | * new process group |
| 2529 | */ |
| 2530 | #if DIAGNOSTIC |
| 2531 | if (proc_getpid(p) != pgid) { |
| 2532 | panic("enterpgrp: new pgrp and pid != pgid" ); |
| 2533 | } |
| 2534 | #endif |
| 2535 | if ((np = proc_find(pid: savepid)) == NULL || np != p) { |
| 2536 | if (np != PROC_NULL) { |
| 2537 | proc_rele(p: np); |
| 2538 | } |
| 2539 | pgrp_rele(pgrp: mypgrp); |
| 2540 | return ESRCH; |
| 2541 | } |
| 2542 | proc_rele(p: np); |
| 2543 | |
| 2544 | pgrp = pgrp_alloc(pgid, bits: PGRP_REF_EMPTY); |
| 2545 | |
| 2546 | if (mksess) { |
| 2547 | /* |
| 2548 | * new session |
| 2549 | */ |
| 2550 | sess = session_alloc(leader: p); |
| 2551 | |
| 2552 | bcopy(src: mypgrp->pg_session->s_login, dst: sess->s_login, |
| 2553 | n: sizeof(sess->s_login)); |
| 2554 | os_atomic_andnot(&p->p_flag, P_CONTROLT, relaxed); |
| 2555 | } else { |
| 2556 | sess = session_ref(sess: procsp); |
| 2557 | } |
| 2558 | |
| 2559 | proc_list_lock(); |
| 2560 | pgrp->pg_session = sess; |
| 2561 | p->p_sessionid = sess->s_sid; |
| 2562 | pghash_insert_locked(pgrp); |
| 2563 | if (mksess) { |
| 2564 | LIST_INSERT_HEAD(SESSHASH(sess->s_sid), sess, s_hash); |
| 2565 | } |
| 2566 | proc_list_unlock(); |
| 2567 | } else if (pgrp == mypgrp) { |
| 2568 | pgrp_rele(pgrp); |
| 2569 | pgrp_rele(pgrp: mypgrp); |
| 2570 | return 0; |
| 2571 | } |
| 2572 | |
| 2573 | /* |
| 2574 | * Adjust eligibility of affected pgrps to participate in job control. |
| 2575 | * Increment eligibility counts before decrementing, otherwise we |
| 2576 | * could reach 0 spuriously during the first call. |
| 2577 | */ |
| 2578 | fixjobc(p, pgrp, entering: 1); |
| 2579 | fixjobc(p, pgrp: mypgrp, entering: 0); |
| 2580 | |
| 2581 | pgrp_rele(pgrp: mypgrp); |
| 2582 | pgrp_replace(p, pgrp); |
| 2583 | |
| 2584 | return 0; |
| 2585 | } |
| 2586 | |
| 2587 | /* |
| 2588 | * remove process from process group |
| 2589 | */ |
| 2590 | struct pgrp * |
| 2591 | pgrp_leave_locked(proc_t p) |
| 2592 | { |
| 2593 | struct pgrp *pg; |
| 2594 | |
| 2595 | LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED); |
| 2596 | |
| 2597 | pg = smr_serialized_load(&p->p_pgrp); |
| 2598 | pgrp_del_member(pgrp: pg, p); |
| 2599 | p->p_pgrpid = PGRPID_DEAD; |
| 2600 | smr_clear_store(&p->p_pgrp); |
| 2601 | |
| 2602 | return pg; |
| 2603 | } |
| 2604 | |
| 2605 | struct pgrp * |
| 2606 | pgrp_enter_locked(struct proc *parent, struct proc *child) |
| 2607 | { |
| 2608 | struct pgrp *pgrp; |
| 2609 | |
| 2610 | LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED); |
| 2611 | |
| 2612 | pgrp = pg_ref(smr_serialized_load(&parent->p_pgrp)); |
| 2613 | pgrp_add_member(pgrp, parent, p: child); |
| 2614 | return pgrp; |
| 2615 | } |
| 2616 | |
| 2617 | /* |
| 2618 | * delete a process group |
| 2619 | */ |
| 2620 | static void |
| 2621 | pgrp_free(smr_node_t node) |
| 2622 | { |
| 2623 | struct pgrp *pgrp = __container_of(node, struct pgrp, pg_smr_node); |
| 2624 | |
| 2625 | zfree(pgrp_zone, pgrp); |
| 2626 | } |
| 2627 | |
| 2628 | __attribute__((noinline)) |
| 2629 | static void |
| 2630 | pgrp_destroy(struct pgrp *pgrp) |
| 2631 | { |
| 2632 | struct session *sess; |
| 2633 | |
| 2634 | assert(LIST_EMPTY(&pgrp->pg_members)); |
| 2635 | assert(os_ref_get_raw_mask(&pgrp->pg_refcount) & PGRP_REF_EMPTY); |
| 2636 | |
| 2637 | proc_list_lock(); |
| 2638 | pghash_remove_locked(pgrp); |
| 2639 | proc_list_unlock(); |
| 2640 | |
| 2641 | sess = pgrp->pg_session; |
| 2642 | pgrp->pg_session = SESSION_NULL; |
| 2643 | session_rele(sess); |
| 2644 | |
| 2645 | lck_mtx_destroy(lck: &pgrp->pg_mlock, grp: &proc_mlock_grp); |
| 2646 | if (os_ref_release_raw(&pgrp->pg_hashref, &p_refgrp) == 0) { |
| 2647 | smr_proc_task_call(&pgrp->pg_smr_node, sizeof(*pgrp), pgrp_free); |
| 2648 | } |
| 2649 | } |
| 2650 | |
| 2651 | |
| 2652 | /* |
| 2653 | * Adjust pgrp jobc counters when specified process changes process group. |
| 2654 | * We count the number of processes in each process group that "qualify" |
| 2655 | * the group for terminal job control (those with a parent in a different |
| 2656 | * process group of the same session). If that count reaches zero, the |
| 2657 | * process group becomes orphaned. Check both the specified process' |
| 2658 | * process group and that of its children. |
| 2659 | * entering == 0 => p is leaving specified group. |
| 2660 | * entering == 1 => p is entering specified group. |
| 2661 | */ |
| 2662 | int |
| 2663 | fixjob_callback(proc_t p, void * arg) |
| 2664 | { |
| 2665 | struct fixjob_iterargs *fp; |
| 2666 | struct pgrp * pg, *hispg; |
| 2667 | struct session * mysession, *hissess; |
| 2668 | int entering; |
| 2669 | |
| 2670 | fp = (struct fixjob_iterargs *)arg; |
| 2671 | pg = fp->pg; |
| 2672 | mysession = fp->mysession; |
| 2673 | entering = fp->entering; |
| 2674 | |
| 2675 | hispg = proc_pgrp(p, &hissess); |
| 2676 | |
| 2677 | if (hispg != pg && hissess == mysession) { |
| 2678 | pgrp_lock(pgrp: hispg); |
| 2679 | if (entering) { |
| 2680 | hispg->pg_jobc++; |
| 2681 | pgrp_unlock(pgrp: hispg); |
| 2682 | } else if (--hispg->pg_jobc == 0) { |
| 2683 | pgrp_unlock(pgrp: hispg); |
| 2684 | orphanpg(pg: hispg); |
| 2685 | } else { |
| 2686 | pgrp_unlock(pgrp: hispg); |
| 2687 | } |
| 2688 | } |
| 2689 | pgrp_rele(pgrp: hispg); |
| 2690 | |
| 2691 | return PROC_RETURNED; |
| 2692 | } |
| 2693 | |
| 2694 | void |
| 2695 | fixjobc(proc_t p, struct pgrp *pgrp, int entering) |
| 2696 | { |
| 2697 | struct pgrp *hispgrp = PGRP_NULL; |
| 2698 | struct session *hissess = SESSION_NULL; |
| 2699 | struct session *mysession = pgrp->pg_session; |
| 2700 | proc_t parent; |
| 2701 | struct fixjob_iterargs fjarg; |
| 2702 | boolean_t proc_parent_self; |
| 2703 | |
| 2704 | /* |
| 2705 | * Check if p's parent is current proc, if yes then no need to take |
| 2706 | * a ref; calling proc_parent with current proc as parent may |
| 2707 | * deadlock if current proc is exiting. |
| 2708 | */ |
| 2709 | proc_parent_self = proc_parent_is_currentproc(p); |
| 2710 | if (proc_parent_self) { |
| 2711 | parent = current_proc(); |
| 2712 | } else { |
| 2713 | parent = proc_parent(p); |
| 2714 | } |
| 2715 | |
| 2716 | if (parent != PROC_NULL) { |
| 2717 | hispgrp = proc_pgrp(parent, &hissess); |
| 2718 | if (!proc_parent_self) { |
| 2719 | proc_rele(p: parent); |
| 2720 | } |
| 2721 | } |
| 2722 | |
| 2723 | /* |
| 2724 | * Check p's parent to see whether p qualifies its own process |
| 2725 | * group; if so, adjust count for p's process group. |
| 2726 | */ |
| 2727 | if (hispgrp != pgrp && hissess == mysession) { |
| 2728 | pgrp_lock(pgrp); |
| 2729 | if (entering) { |
| 2730 | pgrp->pg_jobc++; |
| 2731 | pgrp_unlock(pgrp); |
| 2732 | } else if (--pgrp->pg_jobc == 0) { |
| 2733 | pgrp_unlock(pgrp); |
| 2734 | orphanpg(pg: pgrp); |
| 2735 | } else { |
| 2736 | pgrp_unlock(pgrp); |
| 2737 | } |
| 2738 | } |
| 2739 | |
| 2740 | pgrp_rele(pgrp: hispgrp); |
| 2741 | |
| 2742 | /* |
| 2743 | * Check this process' children to see whether they qualify |
| 2744 | * their process groups; if so, adjust counts for children's |
| 2745 | * process groups. |
| 2746 | */ |
| 2747 | fjarg.pg = pgrp; |
| 2748 | fjarg.mysession = mysession; |
| 2749 | fjarg.entering = entering; |
| 2750 | proc_childrenwalk(p, callout: fixjob_callback, arg: &fjarg); |
| 2751 | } |
| 2752 | |
| 2753 | /* |
| 2754 | * The pidlist_* routines support the functions in this file that |
| 2755 | * walk lists of processes applying filters and callouts to the |
| 2756 | * elements of the list. |
| 2757 | * |
| 2758 | * A prior implementation used a single linear array, which can be |
| 2759 | * tricky to allocate on large systems. This implementation creates |
| 2760 | * an SLIST of modestly sized arrays of PIDS_PER_ENTRY elements. |
| 2761 | * |
| 2762 | * The array should be sized large enough to keep the overhead of |
| 2763 | * walking the list low, but small enough that blocking allocations of |
| 2764 | * pidlist_entry_t structures always succeed. |
| 2765 | */ |
| 2766 | |
| 2767 | #define PIDS_PER_ENTRY 1021 |
| 2768 | |
| 2769 | typedef struct pidlist_entry { |
| 2770 | SLIST_ENTRY(pidlist_entry) pe_link; |
| 2771 | u_int pe_nused; |
| 2772 | pid_t pe_pid[PIDS_PER_ENTRY]; |
| 2773 | } pidlist_entry_t; |
| 2774 | |
| 2775 | typedef struct { |
| 2776 | SLIST_HEAD(, pidlist_entry) pl_head; |
| 2777 | struct pidlist_entry *pl_active; |
| 2778 | u_int pl_nalloc; |
| 2779 | } pidlist_t; |
| 2780 | |
| 2781 | static __inline__ pidlist_t * |
| 2782 | pidlist_init(pidlist_t *pl) |
| 2783 | { |
| 2784 | SLIST_INIT(&pl->pl_head); |
| 2785 | pl->pl_active = NULL; |
| 2786 | pl->pl_nalloc = 0; |
| 2787 | return pl; |
| 2788 | } |
| 2789 | |
| 2790 | static u_int |
| 2791 | pidlist_alloc(pidlist_t *pl, u_int needed) |
| 2792 | { |
| 2793 | while (pl->pl_nalloc < needed) { |
| 2794 | pidlist_entry_t *pe = kalloc_type(pidlist_entry_t, |
| 2795 | Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 2796 | SLIST_INSERT_HEAD(&pl->pl_head, pe, pe_link); |
| 2797 | pl->pl_nalloc += (sizeof(pe->pe_pid) / sizeof(pe->pe_pid[0])); |
| 2798 | } |
| 2799 | return pl->pl_nalloc; |
| 2800 | } |
| 2801 | |
| 2802 | static void |
| 2803 | pidlist_free(pidlist_t *pl) |
| 2804 | { |
| 2805 | pidlist_entry_t *pe; |
| 2806 | while (NULL != (pe = SLIST_FIRST(&pl->pl_head))) { |
| 2807 | SLIST_FIRST(&pl->pl_head) = SLIST_NEXT(pe, pe_link); |
| 2808 | kfree_type(pidlist_entry_t, pe); |
| 2809 | } |
| 2810 | pl->pl_nalloc = 0; |
| 2811 | } |
| 2812 | |
| 2813 | static __inline__ void |
| 2814 | pidlist_set_active(pidlist_t *pl) |
| 2815 | { |
| 2816 | pl->pl_active = SLIST_FIRST(&pl->pl_head); |
| 2817 | assert(pl->pl_active); |
| 2818 | } |
| 2819 | |
| 2820 | static void |
| 2821 | pidlist_add_pid(pidlist_t *pl, pid_t pid) |
| 2822 | { |
| 2823 | pidlist_entry_t *pe = pl->pl_active; |
| 2824 | if (pe->pe_nused >= sizeof(pe->pe_pid) / sizeof(pe->pe_pid[0])) { |
| 2825 | if (NULL == (pe = SLIST_NEXT(pe, pe_link))) { |
| 2826 | panic("pidlist allocation exhausted" ); |
| 2827 | } |
| 2828 | pl->pl_active = pe; |
| 2829 | } |
| 2830 | pe->pe_pid[pe->pe_nused++] = pid; |
| 2831 | } |
| 2832 | |
| 2833 | static __inline__ u_int |
| 2834 | pidlist_nalloc(const pidlist_t *pl) |
| 2835 | { |
| 2836 | return pl->pl_nalloc; |
| 2837 | } |
| 2838 | |
| 2839 | /* |
| 2840 | * A process group has become orphaned; if there are any stopped processes in |
| 2841 | * the group, hang-up all process in that group. |
| 2842 | */ |
| 2843 | static void |
| 2844 | orphanpg(struct pgrp *pgrp) |
| 2845 | { |
| 2846 | pidlist_t pid_list, *pl = pidlist_init(pl: &pid_list); |
| 2847 | u_int pid_count_available = 0; |
| 2848 | proc_t p; |
| 2849 | |
| 2850 | /* allocate outside of the pgrp_lock */ |
| 2851 | for (;;) { |
| 2852 | pgrp_lock(pgrp); |
| 2853 | |
| 2854 | boolean_t should_iterate = FALSE; |
| 2855 | pid_count_available = 0; |
| 2856 | |
| 2857 | PGMEMBERS_FOREACH(pgrp, p) { |
| 2858 | pid_count_available++; |
| 2859 | if (p->p_stat == SSTOP) { |
| 2860 | should_iterate = TRUE; |
| 2861 | } |
| 2862 | } |
| 2863 | if (pid_count_available == 0 || !should_iterate) { |
| 2864 | pgrp_unlock(pgrp); |
| 2865 | goto out; /* no orphaned processes OR nothing stopped */ |
| 2866 | } |
| 2867 | if (pidlist_nalloc(pl) >= pid_count_available) { |
| 2868 | break; |
| 2869 | } |
| 2870 | pgrp_unlock(pgrp); |
| 2871 | |
| 2872 | pidlist_alloc(pl, needed: pid_count_available); |
| 2873 | } |
| 2874 | pidlist_set_active(pl); |
| 2875 | |
| 2876 | u_int pid_count = 0; |
| 2877 | PGMEMBERS_FOREACH(pgrp, p) { |
| 2878 | pidlist_add_pid(pl, pid: proc_pid(p)); |
| 2879 | if (++pid_count >= pid_count_available) { |
| 2880 | break; |
| 2881 | } |
| 2882 | } |
| 2883 | pgrp_unlock(pgrp); |
| 2884 | |
| 2885 | const pidlist_entry_t *pe; |
| 2886 | SLIST_FOREACH(pe, &(pl->pl_head), pe_link) { |
| 2887 | for (u_int i = 0; i < pe->pe_nused; i++) { |
| 2888 | const pid_t pid = pe->pe_pid[i]; |
| 2889 | if (0 == pid) { |
| 2890 | continue; /* skip kernproc */ |
| 2891 | } |
| 2892 | p = proc_find(pid); |
| 2893 | if (!p) { |
| 2894 | continue; |
| 2895 | } |
| 2896 | proc_transwait(p, locked: 0); |
| 2897 | pt_setrunnable(p); |
| 2898 | psignal(p, SIGHUP); |
| 2899 | psignal(p, SIGCONT); |
| 2900 | proc_rele(p); |
| 2901 | } |
| 2902 | } |
| 2903 | out: |
| 2904 | pidlist_free(pl); |
| 2905 | } |
| 2906 | |
| 2907 | boolean_t |
| 2908 | proc_is_translated(proc_t p) |
| 2909 | { |
| 2910 | return p && ((p->p_flag & P_TRANSLATED) != 0); |
| 2911 | } |
| 2912 | |
| 2913 | |
| 2914 | |
| 2915 | int |
| 2916 | proc_is_classic(proc_t p __unused) |
| 2917 | { |
| 2918 | return 0; |
| 2919 | } |
| 2920 | |
| 2921 | bool |
| 2922 | proc_is_exotic( |
| 2923 | proc_t p) |
| 2924 | { |
| 2925 | if (p == NULL) { |
| 2926 | return false; |
| 2927 | } |
| 2928 | return task_is_exotic(task: proc_task(proc: p)); |
| 2929 | } |
| 2930 | |
| 2931 | bool |
| 2932 | proc_is_alien( |
| 2933 | proc_t p) |
| 2934 | { |
| 2935 | if (p == NULL) { |
| 2936 | return false; |
| 2937 | } |
| 2938 | return task_is_alien(task: proc_task(proc: p)); |
| 2939 | } |
| 2940 | |
| 2941 | bool |
| 2942 | proc_is_driver(proc_t p) |
| 2943 | { |
| 2944 | if (p == NULL) { |
| 2945 | return false; |
| 2946 | } |
| 2947 | return task_is_driver(task: proc_task(proc: p)); |
| 2948 | } |
| 2949 | |
| 2950 | bool |
| 2951 | proc_is_third_party_debuggable_driver(proc_t p) |
| 2952 | { |
| 2953 | #if XNU_TARGET_OS_IOS |
| 2954 | uint64_t csflags; |
| 2955 | if (proc_csflags(p, &csflags) != 0) { |
| 2956 | return false; |
| 2957 | } |
| 2958 | |
| 2959 | if (proc_is_driver(p) && |
| 2960 | !csproc_get_platform_binary(p) && |
| 2961 | IOTaskHasEntitlement(proc_task(p), kIODriverKitEntitlementKey) && |
| 2962 | (csflags & CS_GET_TASK_ALLOW) != 0) { |
| 2963 | return true; |
| 2964 | } |
| 2965 | |
| 2966 | return false; |
| 2967 | |
| 2968 | #else |
| 2969 | /* On other platforms, fall back to existing rules for debugging */ |
| 2970 | (void)p; |
| 2971 | return false; |
| 2972 | #endif /* XNU_TARGET_OS_IOS */ |
| 2973 | } |
| 2974 | |
| 2975 | /* XXX Why does this function exist? Need to kill it off... */ |
| 2976 | proc_t |
| 2977 | current_proc_EXTERNAL(void) |
| 2978 | { |
| 2979 | return current_proc(); |
| 2980 | } |
| 2981 | |
| 2982 | int |
| 2983 | proc_is_forcing_hfs_case_sensitivity(proc_t p) |
| 2984 | { |
| 2985 | return (p->p_vfs_iopolicy & P_VFS_IOPOLICY_FORCE_HFS_CASE_SENSITIVITY) ? 1 : 0; |
| 2986 | } |
| 2987 | |
| 2988 | bool |
| 2989 | proc_ignores_content_protection(proc_t p) |
| 2990 | { |
| 2991 | return os_atomic_load(&p->p_vfs_iopolicy, relaxed) & P_VFS_IOPOLICY_IGNORE_CONTENT_PROTECTION; |
| 2992 | } |
| 2993 | |
| 2994 | bool |
| 2995 | proc_ignores_node_permissions(proc_t p) |
| 2996 | { |
| 2997 | return os_atomic_load(&p->p_vfs_iopolicy, relaxed) & P_VFS_IOPOLICY_IGNORE_NODE_PERMISSIONS; |
| 2998 | } |
| 2999 | |
| 3000 | bool |
| 3001 | proc_skip_mtime_update(proc_t p) |
| 3002 | { |
| 3003 | return os_atomic_load(&p->p_vfs_iopolicy, relaxed) & P_VFS_IOPOLICY_SKIP_MTIME_UPDATE; |
| 3004 | } |
| 3005 | |
| 3006 | bool |
| 3007 | proc_allow_low_space_writes(proc_t p) |
| 3008 | { |
| 3009 | return os_atomic_load(&p->p_vfs_iopolicy, relaxed) & P_VFS_IOPOLICY_ALLOW_LOW_SPACE_WRITES; |
| 3010 | } |
| 3011 | |
| 3012 | bool |
| 3013 | proc_disallow_rw_for_o_evtonly(proc_t p) |
| 3014 | { |
| 3015 | return os_atomic_load(&p->p_vfs_iopolicy, relaxed) & P_VFS_IOPOLICY_DISALLOW_RW_FOR_O_EVTONLY; |
| 3016 | } |
| 3017 | |
| 3018 | bool |
| 3019 | proc_use_alternative_symlink_ea(proc_t p) |
| 3020 | { |
| 3021 | return os_atomic_load(&p->p_vfs_iopolicy, relaxed) & P_VFS_IOPOLICY_ALTLINK; |
| 3022 | } |
| 3023 | |
| 3024 | bool |
| 3025 | proc_allow_nocache_write_fs_blksize(proc_t p) |
| 3026 | { |
| 3027 | struct uthread *ut = get_bsdthread_info(current_thread()); |
| 3028 | |
| 3029 | return (ut && (ut->uu_flag & UT_FS_BLKSIZE_NOCACHE_WRITES)) || |
| 3030 | os_atomic_load(&p->p_vfs_iopolicy, relaxed) & P_VFS_IOPOLICY_NOCACHE_WRITE_FS_BLKSIZE; |
| 3031 | } |
| 3032 | |
| 3033 | bool |
| 3034 | proc_is_rsr(proc_t p) |
| 3035 | { |
| 3036 | return os_atomic_load(&p->p_ladvflag, relaxed) & P_RSR; |
| 3037 | } |
| 3038 | |
| 3039 | #if CONFIG_COREDUMP |
| 3040 | /* |
| 3041 | * proc_core_name(format, name, uid, pid) |
| 3042 | * Expand the name described in format, using name, uid, and pid. |
| 3043 | * format is a printf-like string, with four format specifiers: |
| 3044 | * %N name of process ("name") |
| 3045 | * %P process id (pid) |
| 3046 | * %U user id (uid) |
| 3047 | * %T mach_continuous_time() timestamp |
| 3048 | * For example, "%N.core" is the default; they can be disabled completely |
| 3049 | * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P". |
| 3050 | * This is controlled by the sysctl variable kern.corefile (see above). |
| 3051 | */ |
| 3052 | __private_extern__ int |
| 3053 | proc_core_name(const char *format, const char * name, uid_t uid, pid_t pid, char *cf_name, |
| 3054 | size_t cf_name_len) |
| 3055 | { |
| 3056 | const char *appendstr; |
| 3057 | char id_buf[sizeof(OS_STRINGIFY(INT32_MAX))]; /* Buffer for pid/uid -- max 4B */ |
| 3058 | _Static_assert(sizeof(id_buf) == 11, "size mismatch" ); |
| 3059 | char timestamp_buf[sizeof(OS_STRINGIFY(UINT64_MAX))]; /* Buffer for timestamp, including null terminator */ |
| 3060 | size_t i, l, n; |
| 3061 | |
| 3062 | if (cf_name == NULL) { |
| 3063 | goto toolong; |
| 3064 | } |
| 3065 | |
| 3066 | for (i = 0, n = 0; n < cf_name_len && format[i]; i++) { |
| 3067 | switch (format[i]) { |
| 3068 | case '%': /* Format character */ |
| 3069 | i++; |
| 3070 | switch (format[i]) { |
| 3071 | case '%': |
| 3072 | appendstr = "%" ; |
| 3073 | break; |
| 3074 | case 'N': /* process name */ |
| 3075 | appendstr = name; |
| 3076 | break; |
| 3077 | case 'P': /* process id */ |
| 3078 | snprintf(id_buf, count: sizeof(id_buf), "%u" , pid); |
| 3079 | appendstr = id_buf; |
| 3080 | break; |
| 3081 | case 'U': /* user id */ |
| 3082 | snprintf(id_buf, count: sizeof(id_buf), "%u" , uid); |
| 3083 | appendstr = id_buf; |
| 3084 | break; |
| 3085 | case 'T': /* timestamp */ |
| 3086 | snprintf(timestamp_buf, count: sizeof(timestamp_buf), "%llu" , mach_continuous_time()); |
| 3087 | appendstr = timestamp_buf; |
| 3088 | break; |
| 3089 | case '\0': /* format string ended in % symbol */ |
| 3090 | goto endofstring; |
| 3091 | default: |
| 3092 | appendstr = "" ; |
| 3093 | log(LOG_ERR, |
| 3094 | "Unknown format character %c in `%s'\n" , |
| 3095 | format[i], format); |
| 3096 | } |
| 3097 | l = strlen(s: appendstr); |
| 3098 | if ((n + l) >= cf_name_len) { |
| 3099 | goto toolong; |
| 3100 | } |
| 3101 | bcopy(src: appendstr, dst: cf_name + n, n: l); |
| 3102 | n += l; |
| 3103 | break; |
| 3104 | default: |
| 3105 | cf_name[n++] = format[i]; |
| 3106 | } |
| 3107 | } |
| 3108 | if (format[i] != '\0') { |
| 3109 | goto toolong; |
| 3110 | } |
| 3111 | return 0; |
| 3112 | toolong: |
| 3113 | log(LOG_ERR, "pid %ld (%s), uid (%u): corename is too long\n" , |
| 3114 | (long)pid, name, (uint32_t)uid); |
| 3115 | return 1; |
| 3116 | endofstring: |
| 3117 | log(LOG_ERR, "pid %ld (%s), uid (%u): unexpected end of string after %% token\n" , |
| 3118 | (long)pid, name, (uint32_t)uid); |
| 3119 | return 1; |
| 3120 | } |
| 3121 | #endif /* CONFIG_COREDUMP */ |
| 3122 | |
| 3123 | /* Code Signing related routines */ |
| 3124 | |
| 3125 | int |
| 3126 | csops(__unused proc_t p, struct csops_args *uap, __unused int32_t *retval) |
| 3127 | { |
| 3128 | return csops_internal(pid: uap->pid, ops: uap->ops, uaddr: uap->useraddr, |
| 3129 | usersize: uap->usersize, USER_ADDR_NULL); |
| 3130 | } |
| 3131 | |
| 3132 | int |
| 3133 | csops_audittoken(__unused proc_t p, struct csops_audittoken_args *uap, __unused int32_t *retval) |
| 3134 | { |
| 3135 | if (uap->uaudittoken == USER_ADDR_NULL) { |
| 3136 | return EINVAL; |
| 3137 | } |
| 3138 | return csops_internal(pid: uap->pid, ops: uap->ops, uaddr: uap->useraddr, |
| 3139 | usersize: uap->usersize, uaddittoken: uap->uaudittoken); |
| 3140 | } |
| 3141 | |
| 3142 | static int |
| 3143 | csops_copy_token(const void *start, size_t length, user_size_t usize, user_addr_t uaddr) |
| 3144 | { |
| 3145 | char [8] = { 0 }; |
| 3146 | int error; |
| 3147 | |
| 3148 | if (usize < sizeof(fakeheader)) { |
| 3149 | return ERANGE; |
| 3150 | } |
| 3151 | |
| 3152 | /* if no blob, fill in zero header */ |
| 3153 | if (NULL == start) { |
| 3154 | start = fakeheader; |
| 3155 | length = sizeof(fakeheader); |
| 3156 | } else if (usize < length) { |
| 3157 | /* ... if input too short, copy out length of entitlement */ |
| 3158 | uint32_t length32 = htonl((uint32_t)length); |
| 3159 | memcpy(dst: &fakeheader[4], src: &length32, n: sizeof(length32)); |
| 3160 | |
| 3161 | error = copyout(fakeheader, uaddr, sizeof(fakeheader)); |
| 3162 | if (error == 0) { |
| 3163 | return ERANGE; /* input buffer to short, ERANGE signals that */ |
| 3164 | } |
| 3165 | return error; |
| 3166 | } |
| 3167 | return copyout(start, uaddr, length); |
| 3168 | } |
| 3169 | |
| 3170 | static int |
| 3171 | csops_internal(pid_t pid, int ops, user_addr_t uaddr, user_size_t usersize, user_addr_t uaudittoken) |
| 3172 | { |
| 3173 | size_t usize = (size_t)CAST_DOWN(size_t, usersize); |
| 3174 | proc_t pt; |
| 3175 | int forself; |
| 3176 | int error; |
| 3177 | vnode_t tvp; |
| 3178 | off_t toff; |
| 3179 | unsigned char cdhash[SHA1_RESULTLEN]; |
| 3180 | audit_token_t token; |
| 3181 | unsigned int upid = 0, uidversion = 0; |
| 3182 | |
| 3183 | forself = error = 0; |
| 3184 | |
| 3185 | if (pid == 0) { |
| 3186 | pid = proc_selfpid(); |
| 3187 | } |
| 3188 | if (pid == proc_selfpid()) { |
| 3189 | forself = 1; |
| 3190 | } |
| 3191 | |
| 3192 | |
| 3193 | switch (ops) { |
| 3194 | case CS_OPS_STATUS: |
| 3195 | case CS_OPS_CDHASH: |
| 3196 | case CS_OPS_PIDOFFSET: |
| 3197 | case CS_OPS_ENTITLEMENTS_BLOB: |
| 3198 | case CS_OPS_DER_ENTITLEMENTS_BLOB: |
| 3199 | case CS_OPS_IDENTITY: |
| 3200 | case CS_OPS_BLOB: |
| 3201 | case CS_OPS_TEAMID: |
| 3202 | case CS_OPS_CLEAR_LV: |
| 3203 | case CS_OPS_VALIDATION_CATEGORY: |
| 3204 | break; /* not restricted to root */ |
| 3205 | default: |
| 3206 | if (forself == 0 && kauth_cred_issuser(cred: kauth_cred_get()) != TRUE) { |
| 3207 | return EPERM; |
| 3208 | } |
| 3209 | break; |
| 3210 | } |
| 3211 | |
| 3212 | pt = proc_find(pid); |
| 3213 | if (pt == PROC_NULL) { |
| 3214 | return ESRCH; |
| 3215 | } |
| 3216 | |
| 3217 | upid = proc_getpid(p: pt); |
| 3218 | uidversion = proc_pidversion(p: pt); |
| 3219 | if (uaudittoken != USER_ADDR_NULL) { |
| 3220 | error = copyin(uaudittoken, &token, sizeof(audit_token_t)); |
| 3221 | if (error != 0) { |
| 3222 | goto out; |
| 3223 | } |
| 3224 | /* verify the audit token pid/idversion matches with proc */ |
| 3225 | if ((token.val[5] != upid) || (token.val[7] != uidversion)) { |
| 3226 | error = ESRCH; |
| 3227 | goto out; |
| 3228 | } |
| 3229 | } |
| 3230 | |
| 3231 | #if CONFIG_MACF |
| 3232 | switch (ops) { |
| 3233 | case CS_OPS_MARKINVALID: |
| 3234 | case CS_OPS_MARKHARD: |
| 3235 | case CS_OPS_MARKKILL: |
| 3236 | case CS_OPS_MARKRESTRICT: |
| 3237 | case CS_OPS_SET_STATUS: |
| 3238 | case CS_OPS_CLEARINSTALLER: |
| 3239 | case CS_OPS_CLEARPLATFORM: |
| 3240 | case CS_OPS_CLEAR_LV: |
| 3241 | if ((error = mac_proc_check_set_cs_info(curp: current_proc(), target: pt, op: ops))) { |
| 3242 | goto out; |
| 3243 | } |
| 3244 | break; |
| 3245 | default: |
| 3246 | if ((error = mac_proc_check_get_cs_info(curp: current_proc(), target: pt, op: ops))) { |
| 3247 | goto out; |
| 3248 | } |
| 3249 | } |
| 3250 | #endif |
| 3251 | |
| 3252 | switch (ops) { |
| 3253 | case CS_OPS_STATUS: { |
| 3254 | uint32_t retflags; |
| 3255 | |
| 3256 | proc_lock(pt); |
| 3257 | retflags = (uint32_t)proc_getcsflags(p: pt); |
| 3258 | if (cs_process_enforcement(pt)) { |
| 3259 | retflags |= CS_ENFORCEMENT; |
| 3260 | } |
| 3261 | if (csproc_get_platform_binary(pt)) { |
| 3262 | retflags |= CS_PLATFORM_BINARY; |
| 3263 | } |
| 3264 | if (csproc_get_platform_path(pt)) { |
| 3265 | retflags |= CS_PLATFORM_PATH; |
| 3266 | } |
| 3267 | //Don't return CS_REQUIRE_LV if we turned it on with CS_FORCED_LV but still report CS_FORCED_LV |
| 3268 | if ((proc_getcsflags(p: pt) & CS_FORCED_LV) == CS_FORCED_LV) { |
| 3269 | retflags &= (~CS_REQUIRE_LV); |
| 3270 | } |
| 3271 | proc_unlock(pt); |
| 3272 | |
| 3273 | if (uaddr != USER_ADDR_NULL) { |
| 3274 | error = copyout(&retflags, uaddr, sizeof(uint32_t)); |
| 3275 | } |
| 3276 | break; |
| 3277 | } |
| 3278 | case CS_OPS_MARKINVALID: |
| 3279 | proc_lock(pt); |
| 3280 | if ((proc_getcsflags(p: pt) & CS_VALID) == CS_VALID) { /* is currently valid */ |
| 3281 | proc_csflags_clear(p: pt, CS_VALID); /* set invalid */ |
| 3282 | cs_process_invalidated(pt); |
| 3283 | if ((proc_getcsflags(p: pt) & CS_KILL) == CS_KILL) { |
| 3284 | proc_csflags_set(p: pt, CS_KILLED); |
| 3285 | proc_unlock(pt); |
| 3286 | if (cs_debug) { |
| 3287 | printf("CODE SIGNING: marked invalid by pid %d: " |
| 3288 | "p=%d[%s] honoring CS_KILL, final status 0x%x\n" , |
| 3289 | proc_selfpid(), proc_getpid(p: pt), pt->p_comm, |
| 3290 | (unsigned int)proc_getcsflags(p: pt)); |
| 3291 | } |
| 3292 | psignal(p: pt, SIGKILL); |
| 3293 | } else { |
| 3294 | proc_unlock(pt); |
| 3295 | } |
| 3296 | } else { |
| 3297 | proc_unlock(pt); |
| 3298 | } |
| 3299 | |
| 3300 | break; |
| 3301 | |
| 3302 | case CS_OPS_MARKHARD: |
| 3303 | proc_lock(pt); |
| 3304 | proc_csflags_set(p: pt, CS_HARD); |
| 3305 | if ((proc_getcsflags(p: pt) & CS_VALID) == 0) { |
| 3306 | /* @@@ allow? reject? kill? @@@ */ |
| 3307 | proc_unlock(pt); |
| 3308 | error = EINVAL; |
| 3309 | goto out; |
| 3310 | } else { |
| 3311 | proc_unlock(pt); |
| 3312 | } |
| 3313 | break; |
| 3314 | |
| 3315 | case CS_OPS_MARKKILL: |
| 3316 | proc_lock(pt); |
| 3317 | proc_csflags_set(p: pt, CS_KILL); |
| 3318 | if ((proc_getcsflags(p: pt) & CS_VALID) == 0) { |
| 3319 | proc_unlock(pt); |
| 3320 | psignal(p: pt, SIGKILL); |
| 3321 | } else { |
| 3322 | proc_unlock(pt); |
| 3323 | } |
| 3324 | break; |
| 3325 | |
| 3326 | case CS_OPS_PIDOFFSET: |
| 3327 | toff = pt->p_textoff; |
| 3328 | proc_rele(p: pt); |
| 3329 | error = copyout(&toff, uaddr, sizeof(toff)); |
| 3330 | return error; |
| 3331 | |
| 3332 | case CS_OPS_CDHASH: |
| 3333 | |
| 3334 | /* pt already holds a reference on its p_textvp */ |
| 3335 | tvp = pt->p_textvp; |
| 3336 | toff = pt->p_textoff; |
| 3337 | |
| 3338 | if (tvp == NULLVP || usize != SHA1_RESULTLEN) { |
| 3339 | proc_rele(p: pt); |
| 3340 | return EINVAL; |
| 3341 | } |
| 3342 | |
| 3343 | error = vn_getcdhash(vp: tvp, offset: toff, cdhash); |
| 3344 | proc_rele(p: pt); |
| 3345 | |
| 3346 | if (error == 0) { |
| 3347 | error = copyout(cdhash, uaddr, sizeof(cdhash)); |
| 3348 | } |
| 3349 | |
| 3350 | return error; |
| 3351 | |
| 3352 | case CS_OPS_ENTITLEMENTS_BLOB: { |
| 3353 | void *start; |
| 3354 | size_t length; |
| 3355 | struct cs_blob* blob; |
| 3356 | |
| 3357 | proc_lock(pt); |
| 3358 | if ((proc_getcsflags(p: pt) & (CS_VALID | CS_DEBUGGED)) == 0) { |
| 3359 | proc_unlock(pt); |
| 3360 | error = EINVAL; |
| 3361 | goto out; |
| 3362 | } |
| 3363 | blob = csproc_get_blob(pt); |
| 3364 | proc_unlock(pt); |
| 3365 | |
| 3366 | if (!blob) { |
| 3367 | error = EBADEXEC; |
| 3368 | goto out; |
| 3369 | } |
| 3370 | |
| 3371 | void* osent = csblob_os_entitlements_get(csblob: blob); |
| 3372 | if (!osent) { |
| 3373 | goto out; |
| 3374 | } |
| 3375 | CS_GenericBlob* xmlblob = NULL; |
| 3376 | if (amfi->OSEntitlements_get_xml(osent, &xmlblob)) { |
| 3377 | start = (void*)xmlblob; |
| 3378 | length = (size_t)ntohl(xmlblob->length); |
| 3379 | } else { |
| 3380 | goto out; |
| 3381 | } |
| 3382 | |
| 3383 | error = csops_copy_token(start, length, usize, uaddr); |
| 3384 | kfree_data(start, length); |
| 3385 | goto out; |
| 3386 | } |
| 3387 | case CS_OPS_DER_ENTITLEMENTS_BLOB: { |
| 3388 | const void *start; |
| 3389 | size_t length; |
| 3390 | struct cs_blob* blob; |
| 3391 | |
| 3392 | proc_lock(pt); |
| 3393 | if ((proc_getcsflags(p: pt) & (CS_VALID | CS_DEBUGGED)) == 0) { |
| 3394 | proc_unlock(pt); |
| 3395 | error = EINVAL; |
| 3396 | goto out; |
| 3397 | } |
| 3398 | blob = csproc_get_blob(pt); |
| 3399 | proc_unlock(pt); |
| 3400 | |
| 3401 | if (!blob) { |
| 3402 | error = EBADEXEC; |
| 3403 | goto out; |
| 3404 | } |
| 3405 | |
| 3406 | error = csblob_get_der_entitlements(blob, (const CS_GenericBlob **)&start, &length); |
| 3407 | if (error || start == NULL) { |
| 3408 | if (amfi && csblob_os_entitlements_get(csblob: blob)) { |
| 3409 | void* osent = csblob_os_entitlements_get(csblob: blob); |
| 3410 | |
| 3411 | const CS_GenericBlob* transmuted = NULL; |
| 3412 | if (amfi->OSEntitlements_get_transmuted(osent, &transmuted)) { |
| 3413 | start = transmuted; |
| 3414 | length = (size_t)ntohl(transmuted->length); |
| 3415 | } else { |
| 3416 | goto out; |
| 3417 | } |
| 3418 | } else { |
| 3419 | goto out; |
| 3420 | } |
| 3421 | } |
| 3422 | |
| 3423 | error = csops_copy_token(start, length, usize, uaddr); |
| 3424 | goto out; |
| 3425 | } |
| 3426 | |
| 3427 | case CS_OPS_VALIDATION_CATEGORY: |
| 3428 | { |
| 3429 | unsigned int validation_category = CS_VALIDATION_CATEGORY_INVALID; |
| 3430 | error = csproc_get_validation_category(pt, &validation_category); |
| 3431 | if (error) { |
| 3432 | goto out; |
| 3433 | } |
| 3434 | error = copyout(&validation_category, uaddr, sizeof(validation_category)); |
| 3435 | break; |
| 3436 | } |
| 3437 | |
| 3438 | case CS_OPS_MARKRESTRICT: |
| 3439 | proc_lock(pt); |
| 3440 | proc_csflags_set(p: pt, CS_RESTRICT); |
| 3441 | proc_unlock(pt); |
| 3442 | break; |
| 3443 | |
| 3444 | case CS_OPS_SET_STATUS: { |
| 3445 | uint32_t flags; |
| 3446 | |
| 3447 | if (usize < sizeof(flags)) { |
| 3448 | error = ERANGE; |
| 3449 | break; |
| 3450 | } |
| 3451 | |
| 3452 | error = copyin(uaddr, &flags, sizeof(flags)); |
| 3453 | if (error) { |
| 3454 | break; |
| 3455 | } |
| 3456 | |
| 3457 | /* only allow setting a subset of all code sign flags */ |
| 3458 | flags &= |
| 3459 | CS_HARD | CS_EXEC_SET_HARD | |
| 3460 | CS_KILL | CS_EXEC_SET_KILL | |
| 3461 | CS_RESTRICT | |
| 3462 | CS_REQUIRE_LV | |
| 3463 | CS_ENFORCEMENT | CS_EXEC_SET_ENFORCEMENT; |
| 3464 | |
| 3465 | proc_lock(pt); |
| 3466 | if (proc_getcsflags(p: pt) & CS_VALID) { |
| 3467 | if ((flags & CS_ENFORCEMENT) && |
| 3468 | !(proc_getcsflags(p: pt) & CS_ENFORCEMENT)) { |
| 3469 | vm_map_cs_enforcement_set(map: get_task_map(proc_task(proc: pt)), TRUE); |
| 3470 | } |
| 3471 | proc_csflags_set(p: pt, flags); |
| 3472 | } else { |
| 3473 | error = EINVAL; |
| 3474 | } |
| 3475 | proc_unlock(pt); |
| 3476 | |
| 3477 | break; |
| 3478 | } |
| 3479 | case CS_OPS_CLEAR_LV: { |
| 3480 | /* |
| 3481 | * This option is used to remove library validation from |
| 3482 | * a running process. This is used in plugin architectures |
| 3483 | * when a program needs to load untrusted libraries. This |
| 3484 | * allows the process to maintain library validation as |
| 3485 | * long as possible, then drop it only when required. |
| 3486 | * Once a process has loaded the untrusted library, |
| 3487 | * relying on library validation in the future will |
| 3488 | * not be effective. An alternative is to re-exec |
| 3489 | * your application without library validation, or |
| 3490 | * fork an untrusted child. |
| 3491 | */ |
| 3492 | #if !defined(XNU_TARGET_OS_OSX) |
| 3493 | // We only support dropping library validation on macOS |
| 3494 | error = ENOTSUP; |
| 3495 | #else |
| 3496 | /* |
| 3497 | * if we have the flag set, and the caller wants |
| 3498 | * to remove it, and they're entitled to, then |
| 3499 | * we remove it from the csflags |
| 3500 | * |
| 3501 | * NOTE: We are fine to poke into the task because |
| 3502 | * we get a ref to pt when we do the proc_find |
| 3503 | * at the beginning of this function. |
| 3504 | * |
| 3505 | * We also only allow altering ourselves. |
| 3506 | */ |
| 3507 | if (forself == 1 && IOTaskHasEntitlement(task: proc_task(proc: pt), CLEAR_LV_ENTITLEMENT)) { |
| 3508 | proc_lock(pt); |
| 3509 | if (!(proc_getcsflags(p: pt) & CS_INSTALLER)) { |
| 3510 | proc_csflags_clear(p: pt, CS_REQUIRE_LV | CS_FORCED_LV); |
| 3511 | error = 0; |
| 3512 | } else { |
| 3513 | error = EPERM; |
| 3514 | } |
| 3515 | proc_unlock(pt); |
| 3516 | } else { |
| 3517 | error = EPERM; |
| 3518 | } |
| 3519 | #endif |
| 3520 | break; |
| 3521 | } |
| 3522 | case CS_OPS_BLOB: { |
| 3523 | void *start; |
| 3524 | size_t length; |
| 3525 | |
| 3526 | proc_lock(pt); |
| 3527 | if ((proc_getcsflags(p: pt) & (CS_VALID | CS_DEBUGGED)) == 0) { |
| 3528 | proc_unlock(pt); |
| 3529 | error = EINVAL; |
| 3530 | break; |
| 3531 | } |
| 3532 | proc_unlock(pt); |
| 3533 | // Don't need to lock here as not accessing CSFLAGS |
| 3534 | error = cs_blob_get(pt, &start, &length); |
| 3535 | if (error) { |
| 3536 | goto out; |
| 3537 | } |
| 3538 | |
| 3539 | error = csops_copy_token(start, length, usize, uaddr); |
| 3540 | goto out; |
| 3541 | } |
| 3542 | case CS_OPS_IDENTITY: |
| 3543 | case CS_OPS_TEAMID: { |
| 3544 | const char *identity; |
| 3545 | uint8_t [8]; |
| 3546 | uint32_t idlen; |
| 3547 | size_t length; |
| 3548 | |
| 3549 | /* |
| 3550 | * Make identity have a blob header to make it |
| 3551 | * easier on userland to guess the identity |
| 3552 | * length. |
| 3553 | */ |
| 3554 | if (usize < sizeof(fakeheader)) { |
| 3555 | error = ERANGE; |
| 3556 | break; |
| 3557 | } |
| 3558 | memset(s: fakeheader, c: 0, n: sizeof(fakeheader)); |
| 3559 | |
| 3560 | proc_lock(pt); |
| 3561 | if ((proc_getcsflags(p: pt) & (CS_VALID | CS_DEBUGGED)) == 0) { |
| 3562 | proc_unlock(pt); |
| 3563 | error = EINVAL; |
| 3564 | break; |
| 3565 | } |
| 3566 | identity = ops == CS_OPS_TEAMID ? csproc_get_teamid(pt) : cs_identity_get(pt); |
| 3567 | proc_unlock(pt); |
| 3568 | |
| 3569 | if (identity == NULL) { |
| 3570 | error = ENOENT; |
| 3571 | goto out; |
| 3572 | } |
| 3573 | |
| 3574 | length = strlen(s: identity) + 1; /* include NUL */ |
| 3575 | idlen = htonl((uint32_t)(length + sizeof(fakeheader))); |
| 3576 | memcpy(dst: &fakeheader[4], src: &idlen, n: sizeof(idlen)); |
| 3577 | |
| 3578 | error = copyout(fakeheader, uaddr, sizeof(fakeheader)); |
| 3579 | if (error) { |
| 3580 | goto out; |
| 3581 | } |
| 3582 | |
| 3583 | if (usize < sizeof(fakeheader) + length) { |
| 3584 | error = ERANGE; |
| 3585 | } else if (usize > sizeof(fakeheader)) { |
| 3586 | error = copyout(identity, uaddr + sizeof(fakeheader), length); |
| 3587 | } |
| 3588 | goto out; |
| 3589 | } |
| 3590 | |
| 3591 | case CS_OPS_CLEARINSTALLER: |
| 3592 | proc_lock(pt); |
| 3593 | proc_csflags_clear(p: pt, CS_INSTALLER | CS_DATAVAULT_CONTROLLER | CS_EXEC_INHERIT_SIP); |
| 3594 | proc_unlock(pt); |
| 3595 | break; |
| 3596 | |
| 3597 | case CS_OPS_CLEARPLATFORM: |
| 3598 | #if DEVELOPMENT || DEBUG |
| 3599 | if (cs_process_global_enforcement()) { |
| 3600 | error = ENOTSUP; |
| 3601 | break; |
| 3602 | } |
| 3603 | |
| 3604 | #if CONFIG_CSR |
| 3605 | if (csr_check(CSR_ALLOW_APPLE_INTERNAL) != 0) { |
| 3606 | error = ENOTSUP; |
| 3607 | break; |
| 3608 | } |
| 3609 | #endif /* CONFIG_CSR */ |
| 3610 | task_t task = proc_task(pt); |
| 3611 | |
| 3612 | proc_lock(pt); |
| 3613 | proc_csflags_clear(pt, CS_PLATFORM_BINARY | CS_PLATFORM_PATH); |
| 3614 | task_set_hardened_runtime(task, false); |
| 3615 | csproc_clear_platform_binary(pt); |
| 3616 | proc_unlock(pt); |
| 3617 | break; |
| 3618 | #else /* DEVELOPMENT || DEBUG */ |
| 3619 | error = ENOTSUP; |
| 3620 | break; |
| 3621 | #endif /* !DEVELOPMENT || DEBUG */ |
| 3622 | |
| 3623 | default: |
| 3624 | error = EINVAL; |
| 3625 | break; |
| 3626 | } |
| 3627 | out: |
| 3628 | proc_rele(p: pt); |
| 3629 | return error; |
| 3630 | } |
| 3631 | |
| 3632 | void |
| 3633 | proc_iterate( |
| 3634 | unsigned int flags, |
| 3635 | proc_iterate_fn_t callout, |
| 3636 | void *arg, |
| 3637 | proc_iterate_fn_t filterfn, |
| 3638 | void *filterarg) |
| 3639 | { |
| 3640 | pidlist_t pid_list, *pl = pidlist_init(pl: &pid_list); |
| 3641 | u_int pid_count_available = 0; |
| 3642 | |
| 3643 | assert(callout != NULL); |
| 3644 | |
| 3645 | /* allocate outside of the proc_list_lock */ |
| 3646 | for (;;) { |
| 3647 | proc_list_lock(); |
| 3648 | pid_count_available = nprocs + 1; /* kernel_task not counted in nprocs */ |
| 3649 | assert(pid_count_available > 0); |
| 3650 | if (pidlist_nalloc(pl) >= pid_count_available) { |
| 3651 | break; |
| 3652 | } |
| 3653 | proc_list_unlock(); |
| 3654 | |
| 3655 | pidlist_alloc(pl, needed: pid_count_available); |
| 3656 | } |
| 3657 | pidlist_set_active(pl); |
| 3658 | |
| 3659 | /* filter pids into the pid_list */ |
| 3660 | |
| 3661 | u_int pid_count = 0; |
| 3662 | if (flags & PROC_ALLPROCLIST) { |
| 3663 | proc_t p; |
| 3664 | ALLPROC_FOREACH(p) { |
| 3665 | /* ignore processes that are being forked */ |
| 3666 | if (p->p_stat == SIDL || proc_is_shadow(p)) { |
| 3667 | continue; |
| 3668 | } |
| 3669 | if ((filterfn != NULL) && (filterfn(p, filterarg) == 0)) { |
| 3670 | continue; |
| 3671 | } |
| 3672 | pidlist_add_pid(pl, pid: proc_pid(p)); |
| 3673 | if (++pid_count >= pid_count_available) { |
| 3674 | break; |
| 3675 | } |
| 3676 | } |
| 3677 | } |
| 3678 | |
| 3679 | if ((pid_count < pid_count_available) && |
| 3680 | (flags & PROC_ZOMBPROCLIST)) { |
| 3681 | proc_t p; |
| 3682 | ZOMBPROC_FOREACH(p) { |
| 3683 | if (proc_is_shadow(p)) { |
| 3684 | continue; |
| 3685 | } |
| 3686 | if ((filterfn != NULL) && (filterfn(p, filterarg) == 0)) { |
| 3687 | continue; |
| 3688 | } |
| 3689 | pidlist_add_pid(pl, pid: proc_pid(p)); |
| 3690 | if (++pid_count >= pid_count_available) { |
| 3691 | break; |
| 3692 | } |
| 3693 | } |
| 3694 | } |
| 3695 | |
| 3696 | proc_list_unlock(); |
| 3697 | |
| 3698 | /* call callout on processes in the pid_list */ |
| 3699 | |
| 3700 | const pidlist_entry_t *pe; |
| 3701 | SLIST_FOREACH(pe, &(pl->pl_head), pe_link) { |
| 3702 | for (u_int i = 0; i < pe->pe_nused; i++) { |
| 3703 | const pid_t pid = pe->pe_pid[i]; |
| 3704 | proc_t p = proc_find(pid); |
| 3705 | if (p) { |
| 3706 | if ((flags & PROC_NOWAITTRANS) == 0) { |
| 3707 | proc_transwait(p, locked: 0); |
| 3708 | } |
| 3709 | const int callout_ret = callout(p, arg); |
| 3710 | |
| 3711 | switch (callout_ret) { |
| 3712 | case PROC_RETURNED_DONE: |
| 3713 | proc_rele(p); |
| 3714 | OS_FALLTHROUGH; |
| 3715 | case PROC_CLAIMED_DONE: |
| 3716 | goto out; |
| 3717 | |
| 3718 | case PROC_RETURNED: |
| 3719 | proc_rele(p); |
| 3720 | OS_FALLTHROUGH; |
| 3721 | case PROC_CLAIMED: |
| 3722 | break; |
| 3723 | default: |
| 3724 | panic("%s: callout =%d for pid %d" , |
| 3725 | __func__, callout_ret, pid); |
| 3726 | break; |
| 3727 | } |
| 3728 | } else if (flags & PROC_ZOMBPROCLIST) { |
| 3729 | p = proc_find_zombref(pid); |
| 3730 | if (!p) { |
| 3731 | continue; |
| 3732 | } |
| 3733 | const int callout_ret = callout(p, arg); |
| 3734 | |
| 3735 | switch (callout_ret) { |
| 3736 | case PROC_RETURNED_DONE: |
| 3737 | proc_drop_zombref(p); |
| 3738 | OS_FALLTHROUGH; |
| 3739 | case PROC_CLAIMED_DONE: |
| 3740 | goto out; |
| 3741 | |
| 3742 | case PROC_RETURNED: |
| 3743 | proc_drop_zombref(p); |
| 3744 | OS_FALLTHROUGH; |
| 3745 | case PROC_CLAIMED: |
| 3746 | break; |
| 3747 | default: |
| 3748 | panic("%s: callout =%d for zombie %d" , |
| 3749 | __func__, callout_ret, pid); |
| 3750 | break; |
| 3751 | } |
| 3752 | } |
| 3753 | } |
| 3754 | } |
| 3755 | out: |
| 3756 | pidlist_free(pl); |
| 3757 | } |
| 3758 | |
| 3759 | void |
| 3760 | proc_rebootscan( |
| 3761 | proc_iterate_fn_t callout, |
| 3762 | void *arg, |
| 3763 | proc_iterate_fn_t filterfn, |
| 3764 | void *filterarg) |
| 3765 | { |
| 3766 | proc_t p; |
| 3767 | |
| 3768 | assert(callout != NULL); |
| 3769 | |
| 3770 | proc_shutdown_exitcount = 0; |
| 3771 | |
| 3772 | restart_foreach: |
| 3773 | |
| 3774 | proc_list_lock(); |
| 3775 | |
| 3776 | ALLPROC_FOREACH(p) { |
| 3777 | if ((filterfn != NULL) && filterfn(p, filterarg) == 0) { |
| 3778 | continue; |
| 3779 | } |
| 3780 | p = proc_ref(p, true); |
| 3781 | if (!p) { |
| 3782 | proc_list_unlock(); |
| 3783 | goto restart_foreach; |
| 3784 | } |
| 3785 | |
| 3786 | proc_list_unlock(); |
| 3787 | |
| 3788 | proc_transwait(p, locked: 0); |
| 3789 | (void)callout(p, arg); |
| 3790 | proc_rele(p); |
| 3791 | |
| 3792 | goto restart_foreach; |
| 3793 | } |
| 3794 | |
| 3795 | proc_list_unlock(); |
| 3796 | } |
| 3797 | |
| 3798 | void |
| 3799 | proc_childrenwalk( |
| 3800 | proc_t parent, |
| 3801 | proc_iterate_fn_t callout, |
| 3802 | void *arg) |
| 3803 | { |
| 3804 | pidlist_t pid_list, *pl = pidlist_init(pl: &pid_list); |
| 3805 | u_int pid_count_available = 0; |
| 3806 | |
| 3807 | assert(parent != NULL); |
| 3808 | assert(callout != NULL); |
| 3809 | |
| 3810 | for (;;) { |
| 3811 | proc_list_lock(); |
| 3812 | pid_count_available = parent->p_childrencnt; |
| 3813 | if (pid_count_available == 0) { |
| 3814 | proc_list_unlock(); |
| 3815 | goto out; |
| 3816 | } |
| 3817 | if (pidlist_nalloc(pl) >= pid_count_available) { |
| 3818 | break; |
| 3819 | } |
| 3820 | proc_list_unlock(); |
| 3821 | |
| 3822 | pidlist_alloc(pl, needed: pid_count_available); |
| 3823 | } |
| 3824 | pidlist_set_active(pl); |
| 3825 | |
| 3826 | u_int pid_count = 0; |
| 3827 | proc_t p; |
| 3828 | PCHILDREN_FOREACH(parent, p) { |
| 3829 | if (p->p_stat == SIDL || proc_is_shadow(p)) { |
| 3830 | continue; |
| 3831 | } |
| 3832 | |
| 3833 | pidlist_add_pid(pl, pid: proc_pid(p)); |
| 3834 | if (++pid_count >= pid_count_available) { |
| 3835 | break; |
| 3836 | } |
| 3837 | } |
| 3838 | |
| 3839 | proc_list_unlock(); |
| 3840 | |
| 3841 | const pidlist_entry_t *pe; |
| 3842 | SLIST_FOREACH(pe, &(pl->pl_head), pe_link) { |
| 3843 | for (u_int i = 0; i < pe->pe_nused; i++) { |
| 3844 | const pid_t pid = pe->pe_pid[i]; |
| 3845 | p = proc_find(pid); |
| 3846 | if (!p) { |
| 3847 | continue; |
| 3848 | } |
| 3849 | const int callout_ret = callout(p, arg); |
| 3850 | |
| 3851 | switch (callout_ret) { |
| 3852 | case PROC_RETURNED_DONE: |
| 3853 | proc_rele(p); |
| 3854 | OS_FALLTHROUGH; |
| 3855 | case PROC_CLAIMED_DONE: |
| 3856 | goto out; |
| 3857 | |
| 3858 | case PROC_RETURNED: |
| 3859 | proc_rele(p); |
| 3860 | OS_FALLTHROUGH; |
| 3861 | case PROC_CLAIMED: |
| 3862 | break; |
| 3863 | default: |
| 3864 | panic("%s: callout =%d for pid %d" , |
| 3865 | __func__, callout_ret, pid); |
| 3866 | break; |
| 3867 | } |
| 3868 | } |
| 3869 | } |
| 3870 | out: |
| 3871 | pidlist_free(pl); |
| 3872 | } |
| 3873 | |
| 3874 | void |
| 3875 | pgrp_iterate( |
| 3876 | struct pgrp *pgrp, |
| 3877 | proc_iterate_fn_t callout, |
| 3878 | void * arg, |
| 3879 | bool (^filterfn)(proc_t)) |
| 3880 | { |
| 3881 | pidlist_t pid_list, *pl = pidlist_init(pl: &pid_list); |
| 3882 | u_int pid_count_available = 0; |
| 3883 | proc_t p; |
| 3884 | |
| 3885 | assert(pgrp != NULL); |
| 3886 | assert(callout != NULL); |
| 3887 | |
| 3888 | for (;;) { |
| 3889 | pgrp_lock(pgrp); |
| 3890 | /* |
| 3891 | * each member has one ref + some transient holders, |
| 3892 | * this is a good enough approximation |
| 3893 | */ |
| 3894 | pid_count_available = os_ref_get_count_mask(rc: &pgrp->pg_refcount, |
| 3895 | PGRP_REF_BITS); |
| 3896 | if (pidlist_nalloc(pl) >= pid_count_available) { |
| 3897 | break; |
| 3898 | } |
| 3899 | pgrp_unlock(pgrp); |
| 3900 | |
| 3901 | pidlist_alloc(pl, needed: pid_count_available); |
| 3902 | } |
| 3903 | pidlist_set_active(pl); |
| 3904 | |
| 3905 | const pid_t pgid = pgrp->pg_id; |
| 3906 | u_int pid_count = 0; |
| 3907 | |
| 3908 | PGMEMBERS_FOREACH(pgrp, p) { |
| 3909 | if ((filterfn != NULL) && (filterfn(p) == 0)) { |
| 3910 | continue; |
| 3911 | } |
| 3912 | pidlist_add_pid(pl, pid: proc_pid(p)); |
| 3913 | if (++pid_count >= pid_count_available) { |
| 3914 | break; |
| 3915 | } |
| 3916 | } |
| 3917 | |
| 3918 | pgrp_unlock(pgrp); |
| 3919 | |
| 3920 | const pidlist_entry_t *pe; |
| 3921 | SLIST_FOREACH(pe, &(pl->pl_head), pe_link) { |
| 3922 | for (u_int i = 0; i < pe->pe_nused; i++) { |
| 3923 | const pid_t pid = pe->pe_pid[i]; |
| 3924 | if (0 == pid) { |
| 3925 | continue; /* skip kernproc */ |
| 3926 | } |
| 3927 | p = proc_find(pid); |
| 3928 | if (!p) { |
| 3929 | continue; |
| 3930 | } |
| 3931 | if (p->p_pgrpid != pgid) { |
| 3932 | proc_rele(p); |
| 3933 | continue; |
| 3934 | } |
| 3935 | const int callout_ret = callout(p, arg); |
| 3936 | |
| 3937 | switch (callout_ret) { |
| 3938 | case PROC_RETURNED: |
| 3939 | proc_rele(p); |
| 3940 | OS_FALLTHROUGH; |
| 3941 | case PROC_CLAIMED: |
| 3942 | break; |
| 3943 | case PROC_RETURNED_DONE: |
| 3944 | proc_rele(p); |
| 3945 | OS_FALLTHROUGH; |
| 3946 | case PROC_CLAIMED_DONE: |
| 3947 | goto out; |
| 3948 | |
| 3949 | default: |
| 3950 | panic("%s: callout =%d for pid %d" , |
| 3951 | __func__, callout_ret, pid); |
| 3952 | } |
| 3953 | } |
| 3954 | } |
| 3955 | |
| 3956 | out: |
| 3957 | pidlist_free(pl); |
| 3958 | } |
| 3959 | |
| 3960 | /* consumes the newpg ref */ |
| 3961 | static void |
| 3962 | pgrp_replace(struct proc *p, struct pgrp *newpg) |
| 3963 | { |
| 3964 | struct pgrp *oldpg; |
| 3965 | |
| 3966 | proc_list_lock(); |
| 3967 | oldpg = smr_serialized_load(&p->p_pgrp); |
| 3968 | pgrp_del_member(pgrp: oldpg, p); |
| 3969 | pgrp_add_member(pgrp: newpg, PROC_NULL, p); |
| 3970 | proc_list_unlock(); |
| 3971 | |
| 3972 | pgrp_rele(pgrp: oldpg); |
| 3973 | } |
| 3974 | |
| 3975 | struct pgrp * |
| 3976 | pgrp_alloc(pid_t pgid, pggrp_ref_bits_t bits) |
| 3977 | { |
| 3978 | struct pgrp *pgrp = zalloc_flags(pgrp_zone, Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 3979 | |
| 3980 | os_ref_init_mask(&pgrp->pg_refcount, PGRP_REF_BITS, &p_refgrp, bits); |
| 3981 | os_ref_init_raw(&pgrp->pg_hashref, &p_refgrp); |
| 3982 | LIST_INIT(&pgrp->pg_members); |
| 3983 | lck_mtx_init(lck: &pgrp->pg_mlock, grp: &proc_mlock_grp, attr: &proc_lck_attr); |
| 3984 | pgrp->pg_id = pgid; |
| 3985 | |
| 3986 | return pgrp; |
| 3987 | } |
| 3988 | |
| 3989 | void |
| 3990 | pgrp_lock(struct pgrp * pgrp) |
| 3991 | { |
| 3992 | lck_mtx_lock(lck: &pgrp->pg_mlock); |
| 3993 | } |
| 3994 | |
| 3995 | void |
| 3996 | pgrp_unlock(struct pgrp * pgrp) |
| 3997 | { |
| 3998 | lck_mtx_unlock(lck: &pgrp->pg_mlock); |
| 3999 | } |
| 4000 | |
| 4001 | struct session * |
| 4002 | session_find_locked(pid_t sessid) |
| 4003 | { |
| 4004 | struct session *sess; |
| 4005 | |
| 4006 | LIST_FOREACH(sess, SESSHASH(sessid), s_hash) { |
| 4007 | if (sess->s_sid == sessid) { |
| 4008 | break; |
| 4009 | } |
| 4010 | } |
| 4011 | |
| 4012 | return sess; |
| 4013 | } |
| 4014 | |
| 4015 | void |
| 4016 | session_replace_leader(struct proc *old_proc, struct proc *new_proc) |
| 4017 | { |
| 4018 | assert(old_proc == current_proc()); |
| 4019 | |
| 4020 | /* If old_proc is session leader, change the leader to new proc */ |
| 4021 | struct pgrp *pgrp = smr_serialized_load(&old_proc->p_pgrp); |
| 4022 | struct session *sessp = pgrp->pg_session; |
| 4023 | struct tty *ttyp = TTY_NULL; |
| 4024 | |
| 4025 | if (sessp == SESSION_NULL || !SESS_LEADER(old_proc, sessp)) { |
| 4026 | return; |
| 4027 | } |
| 4028 | |
| 4029 | session_lock(sess: sessp); |
| 4030 | if (sessp->s_ttyp && sessp->s_ttyp->t_session == sessp) { |
| 4031 | ttyp = sessp->s_ttyp; |
| 4032 | ttyhold(tp: ttyp); |
| 4033 | } |
| 4034 | |
| 4035 | /* Do the dance to take tty lock and session lock */ |
| 4036 | if (ttyp) { |
| 4037 | session_unlock(sess: sessp); |
| 4038 | tty_lock(tp: ttyp); |
| 4039 | session_lock(sess: sessp); |
| 4040 | } |
| 4041 | |
| 4042 | sessp->s_leader = new_proc; |
| 4043 | session_unlock(sess: sessp); |
| 4044 | |
| 4045 | if (ttyp) { |
| 4046 | tty_unlock(tp: ttyp); |
| 4047 | ttyfree(ttyp); |
| 4048 | } |
| 4049 | } |
| 4050 | |
| 4051 | void |
| 4052 | session_lock(struct session * sess) |
| 4053 | { |
| 4054 | lck_mtx_lock(lck: &sess->s_mlock); |
| 4055 | } |
| 4056 | |
| 4057 | |
| 4058 | void |
| 4059 | session_unlock(struct session * sess) |
| 4060 | { |
| 4061 | lck_mtx_unlock(lck: &sess->s_mlock); |
| 4062 | } |
| 4063 | |
| 4064 | struct pgrp * |
| 4065 | proc_pgrp(proc_t p, struct session **sessp) |
| 4066 | { |
| 4067 | struct pgrp *pgrp = PGRP_NULL; |
| 4068 | bool success = false; |
| 4069 | |
| 4070 | if (__probable(p != PROC_NULL)) { |
| 4071 | smr_proc_task_enter(); |
| 4072 | pgrp = smr_entered_load(&p->p_pgrp); |
| 4073 | success = pgrp == PGRP_NULL || pg_ref_try(pgrp); |
| 4074 | smr_proc_task_leave(); |
| 4075 | |
| 4076 | if (__improbable(!success)) { |
| 4077 | /* |
| 4078 | * We caught the process in the middle of pgrp_replace(), |
| 4079 | * go the slow, never failing way. |
| 4080 | */ |
| 4081 | proc_list_lock(); |
| 4082 | pgrp = pg_ref(smr_serialized_load(&p->p_pgrp)); |
| 4083 | proc_list_unlock(); |
| 4084 | } |
| 4085 | } |
| 4086 | |
| 4087 | if (sessp) { |
| 4088 | *sessp = pgrp ? pgrp->pg_session : SESSION_NULL; |
| 4089 | } |
| 4090 | return pgrp; |
| 4091 | } |
| 4092 | |
| 4093 | struct pgrp * |
| 4094 | tty_pgrp_locked(struct tty *tp) |
| 4095 | { |
| 4096 | struct pgrp *pg = PGRP_NULL; |
| 4097 | |
| 4098 | /* either the tty_lock() or the proc_list_lock() must be held */ |
| 4099 | |
| 4100 | if (tp->t_pgrp) { |
| 4101 | pg = pg_ref(pgrp: tp->t_pgrp); |
| 4102 | } |
| 4103 | |
| 4104 | return pg; |
| 4105 | } |
| 4106 | |
| 4107 | int |
| 4108 | proc_transstart(proc_t p, int locked, int non_blocking) |
| 4109 | { |
| 4110 | if (locked == 0) { |
| 4111 | proc_lock(p); |
| 4112 | } |
| 4113 | while ((p->p_lflag & P_LINTRANSIT) == P_LINTRANSIT) { |
| 4114 | if (((p->p_lflag & P_LTRANSCOMMIT) == P_LTRANSCOMMIT) || non_blocking) { |
| 4115 | if (locked == 0) { |
| 4116 | proc_unlock(p); |
| 4117 | } |
| 4118 | return EDEADLK; |
| 4119 | } |
| 4120 | p->p_lflag |= P_LTRANSWAIT; |
| 4121 | msleep(chan: &p->p_lflag, mtx: &p->p_mlock, pri: 0, wmesg: "proc_signstart" , NULL); |
| 4122 | } |
| 4123 | p->p_lflag |= P_LINTRANSIT; |
| 4124 | p->p_transholder = current_thread(); |
| 4125 | if (locked == 0) { |
| 4126 | proc_unlock(p); |
| 4127 | } |
| 4128 | return 0; |
| 4129 | } |
| 4130 | |
| 4131 | void |
| 4132 | proc_transcommit(proc_t p, int locked) |
| 4133 | { |
| 4134 | if (locked == 0) { |
| 4135 | proc_lock(p); |
| 4136 | } |
| 4137 | |
| 4138 | assert((p->p_lflag & P_LINTRANSIT) == P_LINTRANSIT); |
| 4139 | assert(p->p_transholder == current_thread()); |
| 4140 | p->p_lflag |= P_LTRANSCOMMIT; |
| 4141 | |
| 4142 | if ((p->p_lflag & P_LTRANSWAIT) == P_LTRANSWAIT) { |
| 4143 | p->p_lflag &= ~P_LTRANSWAIT; |
| 4144 | wakeup(chan: &p->p_lflag); |
| 4145 | } |
| 4146 | if (locked == 0) { |
| 4147 | proc_unlock(p); |
| 4148 | } |
| 4149 | } |
| 4150 | |
| 4151 | void |
| 4152 | proc_transend(proc_t p, int locked) |
| 4153 | { |
| 4154 | if (locked == 0) { |
| 4155 | proc_lock(p); |
| 4156 | } |
| 4157 | |
| 4158 | p->p_lflag &= ~(P_LINTRANSIT | P_LTRANSCOMMIT); |
| 4159 | p->p_transholder = NULL; |
| 4160 | |
| 4161 | if ((p->p_lflag & P_LTRANSWAIT) == P_LTRANSWAIT) { |
| 4162 | p->p_lflag &= ~P_LTRANSWAIT; |
| 4163 | wakeup(chan: &p->p_lflag); |
| 4164 | } |
| 4165 | if (locked == 0) { |
| 4166 | proc_unlock(p); |
| 4167 | } |
| 4168 | } |
| 4169 | |
| 4170 | int |
| 4171 | proc_transwait(proc_t p, int locked) |
| 4172 | { |
| 4173 | if (locked == 0) { |
| 4174 | proc_lock(p); |
| 4175 | } |
| 4176 | while ((p->p_lflag & P_LINTRANSIT) == P_LINTRANSIT) { |
| 4177 | if ((p->p_lflag & P_LTRANSCOMMIT) == P_LTRANSCOMMIT && current_proc() == p) { |
| 4178 | if (locked == 0) { |
| 4179 | proc_unlock(p); |
| 4180 | } |
| 4181 | return EDEADLK; |
| 4182 | } |
| 4183 | p->p_lflag |= P_LTRANSWAIT; |
| 4184 | msleep(chan: &p->p_lflag, mtx: &p->p_mlock, pri: 0, wmesg: "proc_signstart" , NULL); |
| 4185 | } |
| 4186 | if (locked == 0) { |
| 4187 | proc_unlock(p); |
| 4188 | } |
| 4189 | return 0; |
| 4190 | } |
| 4191 | |
| 4192 | void |
| 4193 | proc_klist_lock(void) |
| 4194 | { |
| 4195 | lck_mtx_lock(lck: &proc_klist_mlock); |
| 4196 | } |
| 4197 | |
| 4198 | void |
| 4199 | proc_klist_unlock(void) |
| 4200 | { |
| 4201 | lck_mtx_unlock(lck: &proc_klist_mlock); |
| 4202 | } |
| 4203 | |
| 4204 | void |
| 4205 | proc_knote(struct proc * p, long hint) |
| 4206 | { |
| 4207 | proc_klist_lock(); |
| 4208 | KNOTE(&p->p_klist, hint); |
| 4209 | proc_klist_unlock(); |
| 4210 | } |
| 4211 | |
| 4212 | void |
| 4213 | proc_transfer_knotes(struct proc *old_proc, struct proc *new_proc) |
| 4214 | { |
| 4215 | struct knote *kn = NULL; |
| 4216 | |
| 4217 | proc_klist_lock(); |
| 4218 | while ((kn = SLIST_FIRST(&old_proc->p_klist))) { |
| 4219 | KNOTE_DETACH(&old_proc->p_klist, kn); |
| 4220 | if (kn->kn_filtid == (uint8_t)~EVFILT_PROC) { |
| 4221 | kn->kn_proc = new_proc; |
| 4222 | KNOTE_ATTACH(&new_proc->p_klist, kn); |
| 4223 | } else { |
| 4224 | assert(kn->kn_filtid == (uint8_t)~EVFILT_SIGNAL); |
| 4225 | kn->kn_proc = NULL; |
| 4226 | } |
| 4227 | } |
| 4228 | proc_klist_unlock(); |
| 4229 | } |
| 4230 | |
| 4231 | void |
| 4232 | proc_knote_drain(struct proc *p) |
| 4233 | { |
| 4234 | struct knote *kn = NULL; |
| 4235 | |
| 4236 | /* |
| 4237 | * Clear the proc's klist to avoid references after the proc is reaped. |
| 4238 | */ |
| 4239 | proc_klist_lock(); |
| 4240 | while ((kn = SLIST_FIRST(&p->p_klist))) { |
| 4241 | kn->kn_proc = PROC_NULL; |
| 4242 | KNOTE_DETACH(&p->p_klist, kn); |
| 4243 | } |
| 4244 | proc_klist_unlock(); |
| 4245 | } |
| 4246 | |
| 4247 | void |
| 4248 | proc_setregister(proc_t p) |
| 4249 | { |
| 4250 | proc_lock(p); |
| 4251 | p->p_lflag |= P_LREGISTER; |
| 4252 | proc_unlock(p); |
| 4253 | } |
| 4254 | |
| 4255 | void |
| 4256 | proc_resetregister(proc_t p) |
| 4257 | { |
| 4258 | proc_lock(p); |
| 4259 | p->p_lflag &= ~P_LREGISTER; |
| 4260 | proc_unlock(p); |
| 4261 | } |
| 4262 | |
| 4263 | bool |
| 4264 | proc_get_pthread_jit_allowlist(proc_t p, bool *late_out) |
| 4265 | { |
| 4266 | bool ret = false; |
| 4267 | |
| 4268 | proc_lock(p); |
| 4269 | ret = (p->p_lflag & P_LPTHREADJITALLOWLIST); |
| 4270 | *late_out = (p->p_lflag & P_LPTHREADJITFREEZELATE); |
| 4271 | proc_unlock(p); |
| 4272 | |
| 4273 | return ret; |
| 4274 | } |
| 4275 | |
| 4276 | void |
| 4277 | proc_set_pthread_jit_allowlist(proc_t p, bool late) |
| 4278 | { |
| 4279 | proc_lock(p); |
| 4280 | p->p_lflag |= P_LPTHREADJITALLOWLIST; |
| 4281 | if (late) { |
| 4282 | p->p_lflag |= P_LPTHREADJITFREEZELATE; |
| 4283 | } |
| 4284 | proc_unlock(p); |
| 4285 | } |
| 4286 | |
| 4287 | pid_t |
| 4288 | proc_pgrpid(proc_t p) |
| 4289 | { |
| 4290 | return p->p_pgrpid; |
| 4291 | } |
| 4292 | |
| 4293 | pid_t |
| 4294 | proc_sessionid(proc_t p) |
| 4295 | { |
| 4296 | return p->p_sessionid; |
| 4297 | } |
| 4298 | |
| 4299 | pid_t |
| 4300 | proc_selfpgrpid() |
| 4301 | { |
| 4302 | return current_proc()->p_pgrpid; |
| 4303 | } |
| 4304 | |
| 4305 | |
| 4306 | /* return control and action states */ |
| 4307 | int |
| 4308 | proc_getpcontrol(int pid, int * pcontrolp) |
| 4309 | { |
| 4310 | proc_t p; |
| 4311 | |
| 4312 | p = proc_find(pid); |
| 4313 | if (p == PROC_NULL) { |
| 4314 | return ESRCH; |
| 4315 | } |
| 4316 | if (pcontrolp != NULL) { |
| 4317 | *pcontrolp = p->p_pcaction; |
| 4318 | } |
| 4319 | |
| 4320 | proc_rele(p); |
| 4321 | return 0; |
| 4322 | } |
| 4323 | |
| 4324 | int |
| 4325 | proc_dopcontrol(proc_t p) |
| 4326 | { |
| 4327 | int pcontrol; |
| 4328 | os_reason_t kill_reason; |
| 4329 | |
| 4330 | proc_lock(p); |
| 4331 | |
| 4332 | pcontrol = PROC_CONTROL_STATE(p); |
| 4333 | |
| 4334 | if (PROC_ACTION_STATE(p) == 0) { |
| 4335 | switch (pcontrol) { |
| 4336 | case P_PCTHROTTLE: |
| 4337 | PROC_SETACTION_STATE(p); |
| 4338 | proc_unlock(p); |
| 4339 | printf("low swap: throttling pid %d (%s)\n" , proc_getpid(p), p->p_comm); |
| 4340 | break; |
| 4341 | |
| 4342 | case P_PCSUSP: |
| 4343 | PROC_SETACTION_STATE(p); |
| 4344 | proc_unlock(p); |
| 4345 | printf("low swap: suspending pid %d (%s)\n" , proc_getpid(p), p->p_comm); |
| 4346 | task_suspend(target_task: proc_task(proc: p)); |
| 4347 | break; |
| 4348 | |
| 4349 | case P_PCKILL: |
| 4350 | PROC_SETACTION_STATE(p); |
| 4351 | proc_unlock(p); |
| 4352 | printf("low swap: killing pid %d (%s)\n" , proc_getpid(p), p->p_comm); |
| 4353 | kill_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_LOWSWAP); |
| 4354 | psignal_with_reason(p, SIGKILL, signal_reason: kill_reason); |
| 4355 | break; |
| 4356 | |
| 4357 | default: |
| 4358 | proc_unlock(p); |
| 4359 | } |
| 4360 | } else { |
| 4361 | proc_unlock(p); |
| 4362 | } |
| 4363 | |
| 4364 | return PROC_RETURNED; |
| 4365 | } |
| 4366 | |
| 4367 | |
| 4368 | /* |
| 4369 | * Resume a throttled or suspended process. This is an internal interface that's only |
| 4370 | * used by the user level code that presents the GUI when we run out of swap space and |
| 4371 | * hence is restricted to processes with superuser privileges. |
| 4372 | */ |
| 4373 | |
| 4374 | int |
| 4375 | proc_resetpcontrol(int pid) |
| 4376 | { |
| 4377 | proc_t p; |
| 4378 | int pcontrol; |
| 4379 | int error; |
| 4380 | proc_t self = current_proc(); |
| 4381 | |
| 4382 | /* if the process has been validated to handle resource control or root is valid one */ |
| 4383 | if (((self->p_lflag & P_LVMRSRCOWNER) == 0) && (error = suser(cred: kauth_cred_get(), acflag: 0))) { |
| 4384 | return error; |
| 4385 | } |
| 4386 | |
| 4387 | p = proc_find(pid); |
| 4388 | if (p == PROC_NULL) { |
| 4389 | return ESRCH; |
| 4390 | } |
| 4391 | |
| 4392 | proc_lock(p); |
| 4393 | |
| 4394 | pcontrol = PROC_CONTROL_STATE(p); |
| 4395 | |
| 4396 | if (PROC_ACTION_STATE(p) != 0) { |
| 4397 | switch (pcontrol) { |
| 4398 | case P_PCTHROTTLE: |
| 4399 | PROC_RESETACTION_STATE(p); |
| 4400 | proc_unlock(p); |
| 4401 | printf("low swap: unthrottling pid %d (%s)\n" , proc_getpid(p), p->p_comm); |
| 4402 | break; |
| 4403 | |
| 4404 | case P_PCSUSP: |
| 4405 | PROC_RESETACTION_STATE(p); |
| 4406 | proc_unlock(p); |
| 4407 | printf("low swap: resuming pid %d (%s)\n" , proc_getpid(p), p->p_comm); |
| 4408 | task_resume(target_task: proc_task(proc: p)); |
| 4409 | break; |
| 4410 | |
| 4411 | case P_PCKILL: |
| 4412 | /* Huh? */ |
| 4413 | PROC_SETACTION_STATE(p); |
| 4414 | proc_unlock(p); |
| 4415 | printf("low swap: attempt to unkill pid %d (%s) ignored\n" , proc_getpid(p), p->p_comm); |
| 4416 | break; |
| 4417 | |
| 4418 | default: |
| 4419 | proc_unlock(p); |
| 4420 | } |
| 4421 | } else { |
| 4422 | proc_unlock(p); |
| 4423 | } |
| 4424 | |
| 4425 | proc_rele(p); |
| 4426 | return 0; |
| 4427 | } |
| 4428 | |
| 4429 | |
| 4430 | |
| 4431 | struct no_paging_space { |
| 4432 | uint64_t pcs_max_size; |
| 4433 | uint64_t pcs_uniqueid; |
| 4434 | int pcs_pid; |
| 4435 | int pcs_proc_count; |
| 4436 | uint64_t pcs_total_size; |
| 4437 | |
| 4438 | uint64_t npcs_max_size; |
| 4439 | uint64_t npcs_uniqueid; |
| 4440 | int npcs_pid; |
| 4441 | int npcs_proc_count; |
| 4442 | uint64_t npcs_total_size; |
| 4443 | |
| 4444 | int apcs_proc_count; |
| 4445 | uint64_t apcs_total_size; |
| 4446 | }; |
| 4447 | |
| 4448 | |
| 4449 | static int |
| 4450 | proc_pcontrol_filter(proc_t p, void *arg) |
| 4451 | { |
| 4452 | struct no_paging_space *nps; |
| 4453 | uint64_t compressed; |
| 4454 | |
| 4455 | nps = (struct no_paging_space *)arg; |
| 4456 | |
| 4457 | compressed = get_task_compressed(proc_task(proc: p)); |
| 4458 | |
| 4459 | if (PROC_CONTROL_STATE(p)) { |
| 4460 | if (PROC_ACTION_STATE(p) == 0) { |
| 4461 | if (compressed > nps->pcs_max_size) { |
| 4462 | nps->pcs_pid = proc_getpid(p); |
| 4463 | nps->pcs_uniqueid = proc_uniqueid(p); |
| 4464 | nps->pcs_max_size = compressed; |
| 4465 | } |
| 4466 | nps->pcs_total_size += compressed; |
| 4467 | nps->pcs_proc_count++; |
| 4468 | } else { |
| 4469 | nps->apcs_total_size += compressed; |
| 4470 | nps->apcs_proc_count++; |
| 4471 | } |
| 4472 | } else { |
| 4473 | if (compressed > nps->npcs_max_size) { |
| 4474 | nps->npcs_pid = proc_getpid(p); |
| 4475 | nps->npcs_uniqueid = proc_uniqueid(p); |
| 4476 | nps->npcs_max_size = compressed; |
| 4477 | } |
| 4478 | nps->npcs_total_size += compressed; |
| 4479 | nps->npcs_proc_count++; |
| 4480 | } |
| 4481 | return 0; |
| 4482 | } |
| 4483 | |
| 4484 | |
| 4485 | static int |
| 4486 | proc_pcontrol_null(__unused proc_t p, __unused void *arg) |
| 4487 | { |
| 4488 | return PROC_RETURNED; |
| 4489 | } |
| 4490 | |
| 4491 | |
| 4492 | /* |
| 4493 | * Deal with the low on compressor pool space condition... this function |
| 4494 | * gets called when we are approaching the limits of the compressor pool or |
| 4495 | * we are unable to create a new swap file. |
| 4496 | * Since this eventually creates a memory deadlock situtation, we need to take action to free up |
| 4497 | * memory resources (both compressed and uncompressed) in order to prevent the system from hanging completely. |
| 4498 | * There are 2 categories of processes to deal with. Those that have an action |
| 4499 | * associated with them by the task itself and those that do not. Actionable |
| 4500 | * tasks can have one of three categories specified: ones that |
| 4501 | * can be killed immediately, ones that should be suspended, and ones that should |
| 4502 | * be throttled. Processes that do not have an action associated with them are normally |
| 4503 | * ignored unless they are utilizing such a large percentage of the compressor pool (currently 50%) |
| 4504 | * that only by killing them can we hope to put the system back into a usable state. |
| 4505 | */ |
| 4506 | |
| 4507 | #define NO_PAGING_SPACE_DEBUG 0 |
| 4508 | |
| 4509 | extern uint64_t vm_compressor_pages_compressed(void); |
| 4510 | |
| 4511 | struct timeval last_no_space_action = {.tv_sec = 0, .tv_usec = 0}; |
| 4512 | |
| 4513 | #define MB_SIZE (1024 * 1024ULL) |
| 4514 | boolean_t memorystatus_kill_on_VM_compressor_space_shortage(boolean_t); |
| 4515 | |
| 4516 | extern int32_t max_kill_priority; |
| 4517 | |
| 4518 | int |
| 4519 | no_paging_space_action() |
| 4520 | { |
| 4521 | proc_t p; |
| 4522 | struct no_paging_space nps; |
| 4523 | struct timeval now; |
| 4524 | os_reason_t kill_reason; |
| 4525 | |
| 4526 | /* |
| 4527 | * Throttle how often we come through here. Once every 5 seconds should be plenty. |
| 4528 | */ |
| 4529 | microtime(tv: &now); |
| 4530 | |
| 4531 | if (now.tv_sec <= last_no_space_action.tv_sec + 5) { |
| 4532 | return 0; |
| 4533 | } |
| 4534 | |
| 4535 | /* |
| 4536 | * Examine all processes and find the biggest (biggest is based on the number of pages this |
| 4537 | * task has in the compressor pool) that has been marked to have some action |
| 4538 | * taken when swap space runs out... we also find the biggest that hasn't been marked for |
| 4539 | * action. |
| 4540 | * |
| 4541 | * If the biggest non-actionable task is over the "dangerously big" threashold (currently 50% of |
| 4542 | * the total number of pages held by the compressor, we go ahead and kill it since no other task |
| 4543 | * can have any real effect on the situation. Otherwise, we go after the actionable process. |
| 4544 | */ |
| 4545 | bzero(s: &nps, n: sizeof(nps)); |
| 4546 | |
| 4547 | proc_iterate(PROC_ALLPROCLIST, callout: proc_pcontrol_null, arg: (void *)NULL, filterfn: proc_pcontrol_filter, filterarg: (void *)&nps); |
| 4548 | |
| 4549 | #if NO_PAGING_SPACE_DEBUG |
| 4550 | printf("low swap: npcs_proc_count = %d, npcs_total_size = %qd, npcs_max_size = %qd\n" , |
| 4551 | nps.npcs_proc_count, nps.npcs_total_size, nps.npcs_max_size); |
| 4552 | printf("low swap: pcs_proc_count = %d, pcs_total_size = %qd, pcs_max_size = %qd\n" , |
| 4553 | nps.pcs_proc_count, nps.pcs_total_size, nps.pcs_max_size); |
| 4554 | printf("low swap: apcs_proc_count = %d, apcs_total_size = %qd\n" , |
| 4555 | nps.apcs_proc_count, nps.apcs_total_size); |
| 4556 | #endif |
| 4557 | if (nps.npcs_max_size > (vm_compressor_pages_compressed() * 50) / 100) { |
| 4558 | /* |
| 4559 | * for now we'll knock out any task that has more then 50% of the pages |
| 4560 | * held by the compressor |
| 4561 | */ |
| 4562 | if ((p = proc_find(pid: nps.npcs_pid)) != PROC_NULL) { |
| 4563 | if (nps.npcs_uniqueid == proc_uniqueid(p)) { |
| 4564 | /* |
| 4565 | * verify this is still the same process |
| 4566 | * in case the proc exited and the pid got reused while |
| 4567 | * we were finishing the proc_iterate and getting to this point |
| 4568 | */ |
| 4569 | last_no_space_action = now; |
| 4570 | |
| 4571 | printf("low swap: killing largest compressed process with pid %d (%s) and size %llu MB\n" , proc_getpid(p), p->p_comm, (nps.npcs_max_size / MB_SIZE)); |
| 4572 | kill_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_LOWSWAP); |
| 4573 | psignal_with_reason(p, SIGKILL, signal_reason: kill_reason); |
| 4574 | |
| 4575 | proc_rele(p); |
| 4576 | |
| 4577 | return 0; |
| 4578 | } |
| 4579 | |
| 4580 | proc_rele(p); |
| 4581 | } |
| 4582 | } |
| 4583 | |
| 4584 | /* |
| 4585 | * We have some processes within our jetsam bands of consideration and hence can be killed. |
| 4586 | * So we will invoke the memorystatus thread to go ahead and kill something. |
| 4587 | */ |
| 4588 | if (memorystatus_get_proccnt_upto_priority(max_bucket_index: max_kill_priority) > 0) { |
| 4589 | last_no_space_action = now; |
| 4590 | /* |
| 4591 | * TODO(jason): This is only mac OS right now, but we'll need |
| 4592 | * something like this on iPad... |
| 4593 | */ |
| 4594 | memorystatus_kill_on_VM_compressor_space_shortage(TRUE); |
| 4595 | return 1; |
| 4596 | } |
| 4597 | |
| 4598 | /* |
| 4599 | * No eligible processes to kill. So let's suspend/kill the largest |
| 4600 | * process depending on its policy control specifications. |
| 4601 | */ |
| 4602 | |
| 4603 | if (nps.pcs_max_size > 0) { |
| 4604 | if ((p = proc_find(pid: nps.pcs_pid)) != PROC_NULL) { |
| 4605 | if (nps.pcs_uniqueid == proc_uniqueid(p)) { |
| 4606 | /* |
| 4607 | * verify this is still the same process |
| 4608 | * in case the proc exited and the pid got reused while |
| 4609 | * we were finishing the proc_iterate and getting to this point |
| 4610 | */ |
| 4611 | last_no_space_action = now; |
| 4612 | |
| 4613 | proc_dopcontrol(p); |
| 4614 | |
| 4615 | proc_rele(p); |
| 4616 | |
| 4617 | return 1; |
| 4618 | } |
| 4619 | |
| 4620 | proc_rele(p); |
| 4621 | } |
| 4622 | } |
| 4623 | last_no_space_action = now; |
| 4624 | |
| 4625 | printf("low swap: unable to find any eligible processes to take action on\n" ); |
| 4626 | |
| 4627 | return 0; |
| 4628 | } |
| 4629 | |
| 4630 | int |
| 4631 | proc_trace_log(__unused proc_t p, struct proc_trace_log_args *uap, __unused int *retval) |
| 4632 | { |
| 4633 | int ret = 0; |
| 4634 | proc_t target_proc = PROC_NULL; |
| 4635 | pid_t target_pid = uap->pid; |
| 4636 | uint64_t target_uniqueid = uap->uniqueid; |
| 4637 | task_t target_task = NULL; |
| 4638 | |
| 4639 | if (priv_check_cred(cred: kauth_cred_get(), PRIV_PROC_TRACE_INSPECT, flags: 0)) { |
| 4640 | ret = EPERM; |
| 4641 | goto out; |
| 4642 | } |
| 4643 | target_proc = proc_find(pid: target_pid); |
| 4644 | if (target_proc != PROC_NULL) { |
| 4645 | if (target_uniqueid != proc_uniqueid(p: target_proc)) { |
| 4646 | ret = ENOENT; |
| 4647 | goto out; |
| 4648 | } |
| 4649 | |
| 4650 | target_task = proc_task(proc: target_proc); |
| 4651 | if (task_send_trace_memory(task: target_task, pid: target_pid, uniqueid: target_uniqueid)) { |
| 4652 | ret = EINVAL; |
| 4653 | goto out; |
| 4654 | } |
| 4655 | } else { |
| 4656 | ret = ENOENT; |
| 4657 | } |
| 4658 | |
| 4659 | out: |
| 4660 | if (target_proc != PROC_NULL) { |
| 4661 | proc_rele(p: target_proc); |
| 4662 | } |
| 4663 | return ret; |
| 4664 | } |
| 4665 | |
| 4666 | #if VM_SCAN_FOR_SHADOW_CHAIN |
| 4667 | extern int vm_map_shadow_max(vm_map_t map); |
| 4668 | int proc_shadow_max(void); |
| 4669 | int |
| 4670 | proc_shadow_max(void) |
| 4671 | { |
| 4672 | int retval, max; |
| 4673 | proc_t p; |
| 4674 | task_t task; |
| 4675 | vm_map_t map; |
| 4676 | |
| 4677 | max = 0; |
| 4678 | proc_list_lock(); |
| 4679 | for (p = allproc.lh_first; (p != 0); p = p->p_list.le_next) { |
| 4680 | if (p->p_stat == SIDL) { |
| 4681 | continue; |
| 4682 | } |
| 4683 | task = proc_task(p); |
| 4684 | if (task == NULL) { |
| 4685 | continue; |
| 4686 | } |
| 4687 | map = get_task_map(task); |
| 4688 | if (map == NULL) { |
| 4689 | continue; |
| 4690 | } |
| 4691 | retval = vm_map_shadow_max(map); |
| 4692 | if (retval > max) { |
| 4693 | max = retval; |
| 4694 | } |
| 4695 | } |
| 4696 | proc_list_unlock(); |
| 4697 | return max; |
| 4698 | } |
| 4699 | #endif /* VM_SCAN_FOR_SHADOW_CHAIN */ |
| 4700 | |
| 4701 | void proc_set_responsible_pid(proc_t target_proc, pid_t responsible_pid); |
| 4702 | void |
| 4703 | proc_set_responsible_pid(proc_t target_proc, pid_t responsible_pid) |
| 4704 | { |
| 4705 | if (target_proc != NULL) { |
| 4706 | target_proc->p_responsible_pid = responsible_pid; |
| 4707 | |
| 4708 | // Also save the responsible UUID |
| 4709 | if (responsible_pid >= 0) { |
| 4710 | proc_t responsible_proc = proc_find(pid: responsible_pid); |
| 4711 | if (responsible_proc != PROC_NULL) { |
| 4712 | proc_getexecutableuuid(p: responsible_proc, uuidbuf: target_proc->p_responsible_uuid, size: sizeof(target_proc->p_responsible_uuid)); |
| 4713 | proc_rele(p: responsible_proc); |
| 4714 | } |
| 4715 | } |
| 4716 | } |
| 4717 | return; |
| 4718 | } |
| 4719 | |
| 4720 | int |
| 4721 | proc_chrooted(proc_t p) |
| 4722 | { |
| 4723 | int retval = 0; |
| 4724 | |
| 4725 | if (p) { |
| 4726 | proc_fdlock(p); |
| 4727 | retval = (p->p_fd.fd_rdir != NULL) ? 1 : 0; |
| 4728 | proc_fdunlock(p); |
| 4729 | } |
| 4730 | |
| 4731 | return retval; |
| 4732 | } |
| 4733 | |
| 4734 | boolean_t |
| 4735 | proc_send_synchronous_EXC_RESOURCE(proc_t p) |
| 4736 | { |
| 4737 | if (p == PROC_NULL) { |
| 4738 | return FALSE; |
| 4739 | } |
| 4740 | |
| 4741 | /* Send sync EXC_RESOURCE if the process is traced */ |
| 4742 | if (ISSET(p->p_lflag, P_LTRACED)) { |
| 4743 | return TRUE; |
| 4744 | } |
| 4745 | return FALSE; |
| 4746 | } |
| 4747 | |
| 4748 | #if CONFIG_MACF |
| 4749 | size_t |
| 4750 | proc_get_syscall_filter_mask_size(int which) |
| 4751 | { |
| 4752 | switch (which) { |
| 4753 | case SYSCALL_MASK_UNIX: |
| 4754 | return nsysent; |
| 4755 | case SYSCALL_MASK_MACH: |
| 4756 | return mach_trap_count; |
| 4757 | case SYSCALL_MASK_KOBJ: |
| 4758 | return mach_kobj_count; |
| 4759 | default: |
| 4760 | return 0; |
| 4761 | } |
| 4762 | } |
| 4763 | |
| 4764 | int |
| 4765 | proc_set_syscall_filter_mask(proc_t p, int which, unsigned char *maskptr, size_t masklen) |
| 4766 | { |
| 4767 | #if DEVELOPMENT || DEBUG |
| 4768 | if (syscallfilter_disable) { |
| 4769 | printf("proc_set_syscall_filter_mask: attempt to set policy for pid %d, but disabled by boot-arg\n" , proc_pid(p)); |
| 4770 | return 0; |
| 4771 | } |
| 4772 | #endif // DEVELOPMENT || DEBUG |
| 4773 | |
| 4774 | switch (which) { |
| 4775 | case SYSCALL_MASK_UNIX: |
| 4776 | if (maskptr != NULL && masklen != nsysent) { |
| 4777 | return EINVAL; |
| 4778 | } |
| 4779 | proc_syscall_filter_mask_set(p, mask: maskptr); |
| 4780 | break; |
| 4781 | case SYSCALL_MASK_MACH: |
| 4782 | if (maskptr != NULL && masklen != (size_t)mach_trap_count) { |
| 4783 | return EINVAL; |
| 4784 | } |
| 4785 | mac_task_set_mach_filter_mask(task: proc_task(proc: p), maskptr); |
| 4786 | break; |
| 4787 | case SYSCALL_MASK_KOBJ: |
| 4788 | if (maskptr != NULL && masklen != (size_t)mach_kobj_count) { |
| 4789 | return EINVAL; |
| 4790 | } |
| 4791 | mac_task_set_kobj_filter_mask(task: proc_task(proc: p), maskptr); |
| 4792 | break; |
| 4793 | default: |
| 4794 | return EINVAL; |
| 4795 | } |
| 4796 | |
| 4797 | return 0; |
| 4798 | } |
| 4799 | |
| 4800 | int |
| 4801 | proc_set_syscall_filter_callbacks(syscall_filter_cbs_t cbs) |
| 4802 | { |
| 4803 | if (cbs->version != SYSCALL_FILTER_CALLBACK_VERSION) { |
| 4804 | return EINVAL; |
| 4805 | } |
| 4806 | |
| 4807 | /* XXX register unix filter callback instead of using MACF hook. */ |
| 4808 | |
| 4809 | if (cbs->mach_filter_cbfunc || cbs->kobj_filter_cbfunc) { |
| 4810 | if (mac_task_register_filter_callbacks(mach_cbfunc: cbs->mach_filter_cbfunc, |
| 4811 | kobj_cbfunc: cbs->kobj_filter_cbfunc) != 0) { |
| 4812 | return EPERM; |
| 4813 | } |
| 4814 | } |
| 4815 | |
| 4816 | return 0; |
| 4817 | } |
| 4818 | |
| 4819 | int |
| 4820 | proc_set_syscall_filter_index(int which, int num, int index) |
| 4821 | { |
| 4822 | switch (which) { |
| 4823 | case SYSCALL_MASK_KOBJ: |
| 4824 | if (ipc_kobject_set_kobjidx(msgid: num, index) != 0) { |
| 4825 | return ENOENT; |
| 4826 | } |
| 4827 | break; |
| 4828 | default: |
| 4829 | return EINVAL; |
| 4830 | } |
| 4831 | |
| 4832 | return 0; |
| 4833 | } |
| 4834 | #endif /* CONFIG_MACF */ |
| 4835 | |
| 4836 | int |
| 4837 | proc_set_filter_message_flag(proc_t p, boolean_t flag) |
| 4838 | { |
| 4839 | if (p == PROC_NULL) { |
| 4840 | return EINVAL; |
| 4841 | } |
| 4842 | |
| 4843 | task_set_filter_msg_flag(task: proc_task(proc: p), flag); |
| 4844 | |
| 4845 | return 0; |
| 4846 | } |
| 4847 | |
| 4848 | int |
| 4849 | proc_get_filter_message_flag(proc_t p, boolean_t *flag) |
| 4850 | { |
| 4851 | if (p == PROC_NULL || flag == NULL) { |
| 4852 | return EINVAL; |
| 4853 | } |
| 4854 | |
| 4855 | *flag = task_get_filter_msg_flag(task: proc_task(proc: p)); |
| 4856 | |
| 4857 | return 0; |
| 4858 | } |
| 4859 | |
| 4860 | bool |
| 4861 | proc_is_traced(proc_t p) |
| 4862 | { |
| 4863 | bool ret = FALSE; |
| 4864 | assert(p != PROC_NULL); |
| 4865 | proc_lock(p); |
| 4866 | if (p->p_lflag & P_LTRACED) { |
| 4867 | ret = TRUE; |
| 4868 | } |
| 4869 | proc_unlock(p); |
| 4870 | return ret; |
| 4871 | } |
| 4872 | |
| 4873 | #if CONFIG_PROC_RESOURCE_LIMITS |
| 4874 | int |
| 4875 | proc_set_filedesc_limits(proc_t p, int soft_limit, int hard_limit) |
| 4876 | { |
| 4877 | struct filedesc *fdp = &p->p_fd; |
| 4878 | int retval = 0; |
| 4879 | |
| 4880 | proc_fdlock(p); |
| 4881 | |
| 4882 | if (hard_limit > 0) { |
| 4883 | if (soft_limit >= hard_limit) { |
| 4884 | soft_limit = 0; |
| 4885 | } |
| 4886 | } |
| 4887 | fdp->fd_nfiles_soft_limit = soft_limit; |
| 4888 | fdp->fd_nfiles_hard_limit = hard_limit; |
| 4889 | /* Make sure that current fd_nfiles hasn't already exceeded these limits */ |
| 4890 | fd_check_limit_exceeded(fdp); |
| 4891 | |
| 4892 | proc_fdunlock(p); |
| 4893 | |
| 4894 | return retval; |
| 4895 | } |
| 4896 | |
| 4897 | int |
| 4898 | proc_set_kqworkloop_limits(proc_t p, int soft_limit, int hard_limit) |
| 4899 | { |
| 4900 | struct filedesc *fdp = &p->p_fd; |
| 4901 | lck_mtx_lock_spin_always(&fdp->fd_kqhashlock); |
| 4902 | |
| 4903 | fdp->kqwl_dyn_soft_limit = soft_limit; |
| 4904 | fdp->kqwl_dyn_hard_limit = hard_limit; |
| 4905 | /* Make sure existing limits aren't exceeded already */ |
| 4906 | kqworkloop_check_limit_exceeded(fdp); |
| 4907 | |
| 4908 | lck_mtx_unlock(&fdp->fd_kqhashlock); |
| 4909 | return 0; |
| 4910 | } |
| 4911 | |
| 4912 | static int |
| 4913 | proc_evaluate_fd_limits_ast(proc_t p, struct filedesc *fdp, int *soft_limit, int *hard_limit) |
| 4914 | { |
| 4915 | int fd_current_size, fd_soft_limit, fd_hard_limit; |
| 4916 | proc_fdlock(p); |
| 4917 | |
| 4918 | fd_current_size = fdp->fd_nfiles_open; |
| 4919 | fd_hard_limit = fdp->fd_nfiles_hard_limit; |
| 4920 | fd_soft_limit = fdp->fd_nfiles_soft_limit; |
| 4921 | |
| 4922 | /* |
| 4923 | * If a thread is going to take action on a specific limit exceeding, it also |
| 4924 | * clears it out to a SENTINEL so that future threads don't reevaluate the |
| 4925 | * limit as having exceeded again |
| 4926 | */ |
| 4927 | if (fd_hard_limit > 0 && fd_current_size >= fd_hard_limit) { |
| 4928 | /* Clear our soft limit when we are sending hard limit notification */ |
| 4929 | fd_soft_limit = 0; |
| 4930 | |
| 4931 | fdp->fd_nfiles_hard_limit = FD_LIMIT_SENTINEL; |
| 4932 | } else if (fd_soft_limit > 0 && fd_current_size >= fd_soft_limit) { |
| 4933 | /* Clear out hard limit when we are sending soft limit notification */ |
| 4934 | fd_hard_limit = 0; |
| 4935 | |
| 4936 | fdp->fd_nfiles_soft_limit = FD_LIMIT_SENTINEL; |
| 4937 | } else { |
| 4938 | /* Neither limits were exceeded */ |
| 4939 | fd_soft_limit = fd_hard_limit = 0; |
| 4940 | } |
| 4941 | |
| 4942 | proc_fdunlock(p); |
| 4943 | |
| 4944 | *soft_limit = fd_soft_limit; |
| 4945 | *hard_limit = fd_hard_limit; |
| 4946 | return fd_current_size; |
| 4947 | } |
| 4948 | |
| 4949 | static int |
| 4950 | proc_evaluate_kqwl_limits_ast(struct filedesc *fdp, int *soft_limit, int *hard_limit) |
| 4951 | { |
| 4952 | lck_mtx_lock_spin_always(&fdp->fd_kqhashlock); |
| 4953 | |
| 4954 | int kqwl_current_size = fdp->num_kqwls; |
| 4955 | int kqwl_soft_limit = fdp->kqwl_dyn_soft_limit; |
| 4956 | int kqwl_hard_limit = fdp->kqwl_dyn_hard_limit; |
| 4957 | |
| 4958 | /* |
| 4959 | * If a thread is going to take action on a specific limit exceeding, it also |
| 4960 | * clears it out to a SENTINEL so that future threads don't reevaluate the |
| 4961 | * limit as having exceeded again |
| 4962 | */ |
| 4963 | if (kqwl_hard_limit > 0 && kqwl_current_size >= kqwl_hard_limit) { |
| 4964 | /* Clear our soft limit when we are sending hard limit notification */ |
| 4965 | kqwl_soft_limit = 0; |
| 4966 | |
| 4967 | fdp->kqwl_dyn_hard_limit = KQWL_LIMIT_SENTINEL; |
| 4968 | } else if (kqwl_soft_limit > 0 && kqwl_current_size >= kqwl_soft_limit) { |
| 4969 | /* Clear out hard limit when we are sending soft limit notification */ |
| 4970 | kqwl_hard_limit = 0; |
| 4971 | |
| 4972 | fdp->kqwl_dyn_soft_limit = KQWL_LIMIT_SENTINEL; |
| 4973 | } else { |
| 4974 | /* Neither limits were exceeded */ |
| 4975 | kqwl_soft_limit = kqwl_hard_limit = 0; |
| 4976 | } |
| 4977 | |
| 4978 | lck_mtx_unlock(&fdp->fd_kqhashlock); |
| 4979 | |
| 4980 | *soft_limit = kqwl_soft_limit; |
| 4981 | *hard_limit = kqwl_hard_limit; |
| 4982 | return kqwl_current_size; |
| 4983 | } |
| 4984 | #endif /* CONFIG_PROC_RESOURCE_LIMITS */ |
| 4985 | |
| 4986 | void |
| 4987 | proc_filedesc_ast(__unused task_t task) |
| 4988 | { |
| 4989 | #if CONFIG_PROC_RESOURCE_LIMITS |
| 4990 | assert(task == current_task()); |
| 4991 | proc_t p = get_bsdtask_info(task); |
| 4992 | struct filedesc *fdp = &p->p_fd; |
| 4993 | |
| 4994 | /* |
| 4995 | * At this point, we can possibly race with other threads which set the AST |
| 4996 | * due to triggering the soft/hard limits for fd or kqworkloops. |
| 4997 | * |
| 4998 | * The first thread to reach this logic will always evaluate hard limit for fd |
| 4999 | * or kqworkloops even if it was the one which triggered the soft limit for |
| 5000 | * them. |
| 5001 | * |
| 5002 | * If a thread takes action on a specific limit, it will clear the limit value |
| 5003 | * in the fdp with a SENTINEL to indicate to other racing threads that they no |
| 5004 | * longer need to evaluate it. |
| 5005 | */ |
| 5006 | int soft_limit, hard_limit; |
| 5007 | int fd_current_size = proc_evaluate_fd_limits_ast(p, fdp, &soft_limit, &hard_limit); |
| 5008 | |
| 5009 | if (hard_limit || soft_limit) { |
| 5010 | return task_filedesc_ast(task, fd_current_size, soft_limit, hard_limit); |
| 5011 | } |
| 5012 | |
| 5013 | int kqwl_current_size = proc_evaluate_kqwl_limits_ast(fdp, &soft_limit, &hard_limit); |
| 5014 | if (hard_limit || soft_limit) { |
| 5015 | return task_kqworkloop_ast(task, kqwl_current_size, soft_limit, hard_limit); |
| 5016 | } |
| 5017 | #endif /* CONFIG_PROC_RESOURCE_LIMITS */ |
| 5018 | } |
| 5019 | |
| 5020 | proc_ro_t |
| 5021 | proc_ro_alloc(proc_t p, proc_ro_data_t p_data, task_t t, task_ro_data_t t_data) |
| 5022 | { |
| 5023 | proc_ro_t pr; |
| 5024 | struct proc_ro pr_local = {}; |
| 5025 | |
| 5026 | pr = (proc_ro_t)zalloc_ro(ZONE_ID_PROC_RO, Z_WAITOK | Z_NOFAIL | Z_ZERO); |
| 5027 | |
| 5028 | if (p != PROC_NULL) { |
| 5029 | pr_local.pr_proc = p; |
| 5030 | pr_local.proc_data = *p_data; |
| 5031 | } |
| 5032 | |
| 5033 | if (t != TASK_NULL) { |
| 5034 | pr_local.pr_task = t; |
| 5035 | pr_local.task_data = *t_data; |
| 5036 | } |
| 5037 | |
| 5038 | if ((p != PROC_NULL) || (t != TASK_NULL)) { |
| 5039 | zalloc_ro_update_elem(ZONE_ID_PROC_RO, pr, &pr_local); |
| 5040 | } |
| 5041 | |
| 5042 | return pr; |
| 5043 | } |
| 5044 | |
| 5045 | proc_ro_t |
| 5046 | proc_ro_ref_task(proc_ro_t pr, task_t t, task_ro_data_t t_data) |
| 5047 | { |
| 5048 | struct proc_ro pr_local; |
| 5049 | |
| 5050 | if (pr->pr_task != TASK_NULL) { |
| 5051 | panic("%s: proc_ro already has an owning task" , __func__); |
| 5052 | } |
| 5053 | |
| 5054 | pr_local = *pr; |
| 5055 | pr_local.pr_task = t; |
| 5056 | pr_local.task_data = *t_data; |
| 5057 | |
| 5058 | zalloc_ro_update_elem(ZONE_ID_PROC_RO, pr, &pr_local); |
| 5059 | |
| 5060 | return pr; |
| 5061 | } |
| 5062 | |
| 5063 | void |
| 5064 | proc_ro_erase_task(proc_ro_t pr) |
| 5065 | { |
| 5066 | zalloc_ro_update_field_atomic(ZONE_ID_PROC_RO, |
| 5067 | pr, pr_task, ZRO_ATOMIC_XCHG_LONG, TASK_NULL); |
| 5068 | } |
| 5069 | |
| 5070 | __abortlike |
| 5071 | static void |
| 5072 | panic_proc_ro_proc_backref_mismatch(proc_t p, proc_ro_t ro) |
| 5073 | { |
| 5074 | panic("proc_ro->proc backref mismatch: p=%p, ro=%p, " |
| 5075 | "ro->pr_proc(ro)=%p" , p, ro, ro->pr_proc); |
| 5076 | } |
| 5077 | |
| 5078 | proc_ro_t |
| 5079 | proc_get_ro(proc_t p) |
| 5080 | { |
| 5081 | proc_ro_t ro = p->p_proc_ro; |
| 5082 | |
| 5083 | zone_require_ro(zone_id: ZONE_ID_PROC_RO, elem_size: sizeof(struct proc_ro), addr: ro); |
| 5084 | if (__improbable(ro->pr_proc != p)) { |
| 5085 | panic_proc_ro_proc_backref_mismatch(p, ro); |
| 5086 | } |
| 5087 | |
| 5088 | return ro; |
| 5089 | } |
| 5090 | |
| 5091 | task_t |
| 5092 | proc_ro_task(proc_ro_t pr) |
| 5093 | { |
| 5094 | return pr->pr_task; |
| 5095 | } |
| 5096 | |