| 1 | /*- |
| 2 | *********************************************************************** |
| 3 | * * |
| 4 | * Copyright (c) David L. Mills 1993-2001 * |
| 5 | * * |
| 6 | * Permission to use, copy, modify, and distribute this software and * |
| 7 | * its documentation for any purpose and without fee is hereby * |
| 8 | * granted, provided that the above copyright notice appears in all * |
| 9 | * copies and that both the copyright notice and this permission * |
| 10 | * notice appear in supporting documentation, and that the name * |
| 11 | * University of Delaware not be used in advertising or publicity * |
| 12 | * pertaining to distribution of the software without specific, * |
| 13 | * written prior permission. The University of Delaware makes no * |
| 14 | * representations about the suitability this software for any * |
| 15 | * purpose. It is provided "as is" without express or implied * |
| 16 | * warranty. * |
| 17 | * * |
| 18 | **********************************************************************/ |
| 19 | |
| 20 | |
| 21 | /* |
| 22 | * Adapted from the original sources for FreeBSD and timecounters by: |
| 23 | * Poul-Henning Kamp <phk@FreeBSD.org>. |
| 24 | * |
| 25 | * The 32bit version of the "LP" macros seems a bit past its "sell by" |
| 26 | * date so I have retained only the 64bit version and included it directly |
| 27 | * in this file. |
| 28 | * |
| 29 | * Only minor changes done to interface with the timecounters over in |
| 30 | * sys/kern/kern_clock.c. Some of the comments below may be (even more) |
| 31 | * confusing and/or plain wrong in that context. |
| 32 | */ |
| 33 | |
| 34 | /* |
| 35 | * Copyright (c) 2017 Apple Computer, Inc. All rights reserved. |
| 36 | * |
| 37 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 38 | * |
| 39 | * This file contains Original Code and/or Modifications of Original Code |
| 40 | * as defined in and that are subject to the Apple Public Source License |
| 41 | * Version 2.0 (the 'License'). You may not use this file except in |
| 42 | * compliance with the License. The rights granted to you under the License |
| 43 | * may not be used to create, or enable the creation or redistribution of, |
| 44 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 45 | * circumvent, violate, or enable the circumvention or violation of, any |
| 46 | * terms of an Apple operating system software license agreement. |
| 47 | * |
| 48 | * Please obtain a copy of the License at |
| 49 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 50 | * |
| 51 | * The Original Code and all software distributed under the License are |
| 52 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 53 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 54 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 55 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 56 | * Please see the License for the specific language governing rights and |
| 57 | * limitations under the License. |
| 58 | * |
| 59 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 60 | */ |
| 61 | |
| 62 | #include <sys/cdefs.h> |
| 63 | #include <sys/param.h> |
| 64 | #include <sys/systm.h> |
| 65 | #include <sys/eventhandler.h> |
| 66 | #include <sys/kernel.h> |
| 67 | #include <sys/priv.h> |
| 68 | #include <sys/proc.h> |
| 69 | #include <sys/lock.h> |
| 70 | #include <sys/time.h> |
| 71 | #include <sys/timex.h> |
| 72 | #include <kern/clock.h> |
| 73 | #include <sys/sysctl.h> |
| 74 | #include <sys/sysproto.h> |
| 75 | #include <sys/kauth.h> |
| 76 | #include <kern/thread_call.h> |
| 77 | #include <kern/timer_call.h> |
| 78 | #include <machine/machine_routines.h> |
| 79 | #if CONFIG_MACF |
| 80 | #include <security/mac_framework.h> |
| 81 | #endif |
| 82 | #include <IOKit/IOBSD.h> |
| 83 | #include <os/log.h> |
| 84 | |
| 85 | typedef int64_t l_fp; |
| 86 | #define L_ADD(v, u) ((v) += (u)) |
| 87 | #define L_SUB(v, u) ((v) -= (u)) |
| 88 | #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32) |
| 89 | #define L_NEG(v) ((v) = -(v)) |
| 90 | #define L_RSHIFT(v, n) \ |
| 91 | do { \ |
| 92 | if ((v) < 0) \ |
| 93 | (v) = -(-(v) >> (n)); \ |
| 94 | else \ |
| 95 | (v) = (v) >> (n); \ |
| 96 | } while (0) |
| 97 | #define L_MPY(v, a) ((v) *= (a)) |
| 98 | #define L_CLR(v) ((v) = 0) |
| 99 | #define L_ISNEG(v) ((v) < 0) |
| 100 | #define L_LINT(v, a) \ |
| 101 | do { \ |
| 102 | if ((a) > 0) \ |
| 103 | ((v) = (int64_t)(a) << 32); \ |
| 104 | else \ |
| 105 | ((v) = -((int64_t)(-(a)) << 32)); \ |
| 106 | } while (0) |
| 107 | #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32) |
| 108 | |
| 109 | /* |
| 110 | * Generic NTP kernel interface |
| 111 | * |
| 112 | * These routines constitute the Network Time Protocol (NTP) interfaces |
| 113 | * for user and daemon application programs. The ntp_gettime() routine |
| 114 | * provides the time, maximum error (synch distance) and estimated error |
| 115 | * (dispersion) to client user application programs. The ntp_adjtime() |
| 116 | * routine is used by the NTP daemon to adjust the calendar clock to an |
| 117 | * externally derived time. The time offset and related variables set by |
| 118 | * this routine are used by other routines in this module to adjust the |
| 119 | * phase and frequency of the clock discipline loop which controls the |
| 120 | * system clock. |
| 121 | * |
| 122 | * When the kernel time is reckoned directly in nanoseconds (NTP_NANO |
| 123 | * defined), the time at each tick interrupt is derived directly from |
| 124 | * the kernel time variable. When the kernel time is reckoned in |
| 125 | * microseconds, (NTP_NANO undefined), the time is derived from the |
| 126 | * kernel time variable together with a variable representing the |
| 127 | * leftover nanoseconds at the last tick interrupt. In either case, the |
| 128 | * current nanosecond time is reckoned from these values plus an |
| 129 | * interpolated value derived by the clock routines in another |
| 130 | * architecture-specific module. The interpolation can use either a |
| 131 | * dedicated counter or a processor cycle counter (PCC) implemented in |
| 132 | * some architectures. |
| 133 | * |
| 134 | */ |
| 135 | /* |
| 136 | * Phase/frequency-lock loop (PLL/FLL) definitions |
| 137 | * |
| 138 | * The nanosecond clock discipline uses two variable types, time |
| 139 | * variables and frequency variables. Both types are represented as 64- |
| 140 | * bit fixed-point quantities with the decimal point between two 32-bit |
| 141 | * halves. On a 32-bit machine, each half is represented as a single |
| 142 | * word and mathematical operations are done using multiple-precision |
| 143 | * arithmetic. On a 64-bit machine, ordinary computer arithmetic is |
| 144 | * used. |
| 145 | * |
| 146 | * A time variable is a signed 64-bit fixed-point number in ns and |
| 147 | * fraction. It represents the remaining time offset to be amortized |
| 148 | * over succeeding tick interrupts. The maximum time offset is about |
| 149 | * 0.5 s and the resolution is about 2.3e-10 ns. |
| 150 | * |
| 151 | * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 |
| 152 | * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 |
| 153 | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 154 | * |s s s| ns | |
| 155 | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 156 | * | fraction | |
| 157 | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 158 | * |
| 159 | * A frequency variable is a signed 64-bit fixed-point number in ns/s |
| 160 | * and fraction. It represents the ns and fraction to be added to the |
| 161 | * kernel time variable at each second. The maximum frequency offset is |
| 162 | * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s. |
| 163 | * |
| 164 | * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 |
| 165 | * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 |
| 166 | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 167 | * |s s s s s s s s s s s s s| ns/s | |
| 168 | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 169 | * | fraction | |
| 170 | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| 171 | */ |
| 172 | |
| 173 | #define SHIFT_PLL 4 |
| 174 | #define SHIFT_FLL 2 |
| 175 | |
| 176 | static int time_state = TIME_OK; |
| 177 | int time_status = STA_UNSYNC; |
| 178 | static long time_tai; |
| 179 | static long time_constant; |
| 180 | static long time_precision = 1; |
| 181 | static long time_maxerror = MAXPHASE / 1000; |
| 182 | static unsigned long last_time_maxerror_update; |
| 183 | long time_esterror = MAXPHASE / 1000; |
| 184 | static long time_reftime; |
| 185 | static l_fp time_offset; |
| 186 | static l_fp time_freq; |
| 187 | static int64_t time_adjtime; |
| 188 | static int updated; |
| 189 | |
| 190 | static LCK_GRP_DECLARE(ntp_lock_grp, "ntp_lock" ); |
| 191 | static LCK_SPIN_DECLARE(ntp_lock, &ntp_lock_grp); |
| 192 | |
| 193 | #define NTP_LOCK(enable) \ |
| 194 | enable = ml_set_interrupts_enabled(FALSE); \ |
| 195 | lck_spin_lock(&ntp_lock); |
| 196 | |
| 197 | #define NTP_UNLOCK(enable) \ |
| 198 | lck_spin_unlock(&ntp_lock);\ |
| 199 | ml_set_interrupts_enabled(enable); |
| 200 | |
| 201 | #define NTP_ASSERT_LOCKED() LCK_SPIN_ASSERT(&ntp_lock, LCK_ASSERT_OWNED) |
| 202 | |
| 203 | static timer_call_data_t ntp_loop_update; |
| 204 | static uint64_t ntp_loop_deadline; |
| 205 | static uint32_t ntp_loop_active; |
| 206 | static uint32_t ntp_loop_period; |
| 207 | #define NTP_LOOP_PERIOD_INTERVAL (NSEC_PER_SEC) /*1 second interval*/ |
| 208 | |
| 209 | void ntp_init(void); |
| 210 | static void hardupdate(long offset); |
| 211 | static void ntp_gettime1(struct ntptimeval *ntvp); |
| 212 | static bool ntp_is_time_error(int tsl); |
| 213 | |
| 214 | static void ntp_loop_update_call(void); |
| 215 | static void refresh_ntp_loop(void); |
| 216 | static void start_ntp_loop(void); |
| 217 | |
| 218 | #if DEVELOPMENT || DEBUG |
| 219 | uint32_t g_should_log_clock_adjustments = 0; |
| 220 | SYSCTL_INT(_kern, OID_AUTO, log_clock_adjustments, CTLFLAG_RW | CTLFLAG_LOCKED, &g_should_log_clock_adjustments, 0, "enable kernel clock adjustment logging" ); |
| 221 | #endif |
| 222 | |
| 223 | static bool |
| 224 | ntp_is_time_error(int tsl) |
| 225 | { |
| 226 | if (tsl & (STA_UNSYNC | STA_CLOCKERR)) { |
| 227 | return true; |
| 228 | } |
| 229 | |
| 230 | return false; |
| 231 | } |
| 232 | |
| 233 | static void |
| 234 | ntp_gettime1(struct ntptimeval *ntvp) |
| 235 | { |
| 236 | struct timespec atv; |
| 237 | |
| 238 | NTP_ASSERT_LOCKED(); |
| 239 | |
| 240 | nanotime(ts: &atv); |
| 241 | ntvp->time.tv_sec = atv.tv_sec; |
| 242 | ntvp->time.tv_nsec = atv.tv_nsec; |
| 243 | if ((unsigned long)atv.tv_sec > last_time_maxerror_update) { |
| 244 | time_maxerror += (MAXFREQ / 1000) * (atv.tv_sec - last_time_maxerror_update); |
| 245 | last_time_maxerror_update = atv.tv_sec; |
| 246 | } |
| 247 | ntvp->maxerror = time_maxerror; |
| 248 | ntvp->esterror = time_esterror; |
| 249 | ntvp->tai = time_tai; |
| 250 | ntvp->time_state = time_state; |
| 251 | |
| 252 | if (ntp_is_time_error(tsl: time_status)) { |
| 253 | ntvp->time_state = TIME_ERROR; |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | int |
| 258 | ntp_gettime(struct proc *p, struct ntp_gettime_args *uap, __unused int32_t *retval) |
| 259 | { |
| 260 | struct ntptimeval ntv; |
| 261 | int error; |
| 262 | boolean_t enable; |
| 263 | |
| 264 | NTP_LOCK(enable); |
| 265 | ntp_gettime1(ntvp: &ntv); |
| 266 | NTP_UNLOCK(enable); |
| 267 | |
| 268 | if (IS_64BIT_PROCESS(p)) { |
| 269 | struct user64_ntptimeval user_ntv = {}; |
| 270 | user_ntv.time.tv_sec = ntv.time.tv_sec; |
| 271 | user_ntv.time.tv_nsec = ntv.time.tv_nsec; |
| 272 | user_ntv.maxerror = ntv.maxerror; |
| 273 | user_ntv.esterror = ntv.esterror; |
| 274 | user_ntv.tai = ntv.tai; |
| 275 | user_ntv.time_state = ntv.time_state; |
| 276 | error = copyout(&user_ntv, uap->ntvp, sizeof(user_ntv)); |
| 277 | } else { |
| 278 | struct user32_ntptimeval user_ntv = {}; |
| 279 | user_ntv.time.tv_sec = (user32_long_t)ntv.time.tv_sec; |
| 280 | user_ntv.time.tv_nsec = (user32_long_t)ntv.time.tv_nsec; |
| 281 | user_ntv.maxerror = (user32_long_t)ntv.maxerror; |
| 282 | user_ntv.esterror = (user32_long_t)ntv.esterror; |
| 283 | user_ntv.tai = (user32_long_t)ntv.tai; |
| 284 | user_ntv.time_state = ntv.time_state; |
| 285 | error = copyout(&user_ntv, uap->ntvp, sizeof(user_ntv)); |
| 286 | } |
| 287 | |
| 288 | if (error) { |
| 289 | return error; |
| 290 | } |
| 291 | |
| 292 | return ntv.time_state; |
| 293 | } |
| 294 | |
| 295 | int |
| 296 | ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap, int32_t *retval) |
| 297 | { |
| 298 | struct timex ntv = {}; |
| 299 | long freq; |
| 300 | unsigned int modes; |
| 301 | int error, ret = 0; |
| 302 | clock_sec_t sec; |
| 303 | clock_usec_t microsecs; |
| 304 | boolean_t enable; |
| 305 | |
| 306 | if (IS_64BIT_PROCESS(p)) { |
| 307 | struct user64_timex user_ntv; |
| 308 | error = copyin(uap->tp, &user_ntv, sizeof(user_ntv)); |
| 309 | ntv.modes = user_ntv.modes; |
| 310 | ntv.offset = (long)user_ntv.offset; |
| 311 | ntv.freq = (long)user_ntv.freq; |
| 312 | ntv.maxerror = (long)user_ntv.maxerror; |
| 313 | ntv.esterror = (long)user_ntv.esterror; |
| 314 | ntv.status = user_ntv.status; |
| 315 | ntv.constant = (long)user_ntv.constant; |
| 316 | ntv.precision = (long)user_ntv.precision; |
| 317 | ntv.tolerance = (long)user_ntv.tolerance; |
| 318 | } else { |
| 319 | struct user32_timex user_ntv; |
| 320 | error = copyin(uap->tp, &user_ntv, sizeof(user_ntv)); |
| 321 | ntv.modes = user_ntv.modes; |
| 322 | ntv.offset = user_ntv.offset; |
| 323 | ntv.freq = user_ntv.freq; |
| 324 | ntv.maxerror = user_ntv.maxerror; |
| 325 | ntv.esterror = user_ntv.esterror; |
| 326 | ntv.status = user_ntv.status; |
| 327 | ntv.constant = user_ntv.constant; |
| 328 | ntv.precision = user_ntv.precision; |
| 329 | ntv.tolerance = user_ntv.tolerance; |
| 330 | } |
| 331 | if (error) { |
| 332 | return error; |
| 333 | } |
| 334 | |
| 335 | #if DEVELOPMENT || DEBUG |
| 336 | if (g_should_log_clock_adjustments) { |
| 337 | os_log(OS_LOG_DEFAULT, "%s: BEFORE modes %u offset %ld freq %ld status %d constant %ld time_adjtime %lld\n" , |
| 338 | __func__, ntv.modes, ntv.offset, ntv.freq, ntv.status, ntv.constant, time_adjtime); |
| 339 | } |
| 340 | #endif |
| 341 | /* |
| 342 | * Update selected clock variables - only the superuser can |
| 343 | * change anything. Note that there is no error checking here on |
| 344 | * the assumption the superuser should know what it is doing. |
| 345 | * Note that either the time constant or TAI offset are loaded |
| 346 | * from the ntv.constant member, depending on the mode bits. If |
| 347 | * the STA_PLL bit in the status word is cleared, the state and |
| 348 | * status words are reset to the initial values at boot. |
| 349 | */ |
| 350 | modes = ntv.modes; |
| 351 | if (modes) { |
| 352 | /* Check that this task is entitled to set the time or it is root */ |
| 353 | if (!IOCurrentTaskHasEntitlement(SETTIME_ENTITLEMENT)) { |
| 354 | #if CONFIG_MACF |
| 355 | error = mac_system_check_settime(cred: kauth_cred_get()); |
| 356 | if (error) { |
| 357 | return error; |
| 358 | } |
| 359 | #endif |
| 360 | if ((error = priv_check_cred(cred: kauth_cred_get(), PRIV_ADJTIME, flags: 0))) { |
| 361 | return error; |
| 362 | } |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | NTP_LOCK(enable); |
| 367 | |
| 368 | if (modes & MOD_MAXERROR) { |
| 369 | clock_gettimeofday(secs: &sec, microsecs: µsecs); |
| 370 | time_maxerror = ntv.maxerror; |
| 371 | last_time_maxerror_update = sec; |
| 372 | } |
| 373 | if (modes & MOD_ESTERROR) { |
| 374 | time_esterror = ntv.esterror; |
| 375 | } |
| 376 | if (modes & MOD_STATUS) { |
| 377 | if (time_status & STA_PLL && !(ntv.status & STA_PLL)) { |
| 378 | time_state = TIME_OK; |
| 379 | time_status = STA_UNSYNC; |
| 380 | } |
| 381 | time_status &= STA_RONLY; |
| 382 | time_status |= ntv.status & ~STA_RONLY; |
| 383 | /* |
| 384 | * Nor PPS or leaps seconds are supported. |
| 385 | * Filter out unsupported bits. |
| 386 | */ |
| 387 | time_status &= STA_SUPPORTED; |
| 388 | } |
| 389 | if (modes & MOD_TIMECONST) { |
| 390 | if (ntv.constant < 0) { |
| 391 | time_constant = 0; |
| 392 | } else if (ntv.constant > MAXTC) { |
| 393 | time_constant = MAXTC; |
| 394 | } else { |
| 395 | time_constant = ntv.constant; |
| 396 | } |
| 397 | } |
| 398 | if (modes & MOD_TAI) { |
| 399 | if (ntv.constant > 0) { |
| 400 | time_tai = ntv.constant; |
| 401 | } |
| 402 | } |
| 403 | if (modes & MOD_NANO) { |
| 404 | time_status |= STA_NANO; |
| 405 | } |
| 406 | if (modes & MOD_MICRO) { |
| 407 | time_status &= ~STA_NANO; |
| 408 | } |
| 409 | if (modes & MOD_CLKB) { |
| 410 | time_status |= STA_CLK; |
| 411 | } |
| 412 | if (modes & MOD_CLKA) { |
| 413 | time_status &= ~STA_CLK; |
| 414 | } |
| 415 | if (modes & MOD_FREQUENCY) { |
| 416 | freq = (ntv.freq * 1000LL) >> 16; |
| 417 | if (freq > MAXFREQ) { |
| 418 | L_LINT(time_freq, MAXFREQ); |
| 419 | } else if (freq < -MAXFREQ) { |
| 420 | L_LINT(time_freq, -MAXFREQ); |
| 421 | } else { |
| 422 | /* |
| 423 | * ntv.freq is [PPM * 2^16] = [us/s * 2^16] |
| 424 | * time_freq is [ns/s * 2^32] |
| 425 | */ |
| 426 | time_freq = ntv.freq * 1000LL * 65536LL; |
| 427 | } |
| 428 | } |
| 429 | if (modes & MOD_OFFSET) { |
| 430 | if (time_status & STA_NANO) { |
| 431 | hardupdate(offset: ntv.offset); |
| 432 | } else { |
| 433 | hardupdate(offset: ntv.offset * 1000); |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | ret = ntp_is_time_error(tsl: time_status) ? TIME_ERROR : time_state; |
| 438 | |
| 439 | #if DEVELOPMENT || DEBUG |
| 440 | if (g_should_log_clock_adjustments) { |
| 441 | os_log(OS_LOG_DEFAULT, "%s: AFTER modes %u offset %lld freq %lld status %d constant %ld time_adjtime %lld\n" , |
| 442 | __func__, modes, time_offset, time_freq, time_status, time_constant, time_adjtime); |
| 443 | } |
| 444 | #endif |
| 445 | |
| 446 | /* |
| 447 | * Retrieve all clock variables. Note that the TAI offset is |
| 448 | * returned only by ntp_gettime(); |
| 449 | */ |
| 450 | if (IS_64BIT_PROCESS(p)) { |
| 451 | struct user64_timex user_ntv = {}; |
| 452 | |
| 453 | user_ntv.modes = modes; |
| 454 | if (time_status & STA_NANO) { |
| 455 | user_ntv.offset = L_GINT(time_offset); |
| 456 | } else { |
| 457 | user_ntv.offset = L_GINT(time_offset) / 1000; |
| 458 | } |
| 459 | if (time_freq > 0) { |
| 460 | user_ntv.freq = L_GINT(((int64_t)(time_freq / 1000LL)) << 16); |
| 461 | } else { |
| 462 | user_ntv.freq = -L_GINT(((int64_t)(-(time_freq) / 1000LL)) << 16); |
| 463 | } |
| 464 | user_ntv.maxerror = time_maxerror; |
| 465 | user_ntv.esterror = time_esterror; |
| 466 | user_ntv.status = time_status; |
| 467 | user_ntv.constant = time_constant; |
| 468 | if (time_status & STA_NANO) { |
| 469 | user_ntv.precision = time_precision; |
| 470 | } else { |
| 471 | user_ntv.precision = time_precision / 1000; |
| 472 | } |
| 473 | user_ntv.tolerance = MAXFREQ * SCALE_PPM; |
| 474 | |
| 475 | /* unlock before copyout */ |
| 476 | NTP_UNLOCK(enable); |
| 477 | |
| 478 | error = copyout(&user_ntv, uap->tp, sizeof(user_ntv)); |
| 479 | } else { |
| 480 | struct user32_timex user_ntv = {}; |
| 481 | |
| 482 | user_ntv.modes = modes; |
| 483 | if (time_status & STA_NANO) { |
| 484 | user_ntv.offset = L_GINT(time_offset); |
| 485 | } else { |
| 486 | user_ntv.offset = L_GINT(time_offset) / 1000; |
| 487 | } |
| 488 | if (time_freq > 0) { |
| 489 | user_ntv.freq = L_GINT((time_freq / 1000LL) << 16); |
| 490 | } else { |
| 491 | user_ntv.freq = -L_GINT((-(time_freq) / 1000LL) << 16); |
| 492 | } |
| 493 | user_ntv.maxerror = (user32_long_t)time_maxerror; |
| 494 | user_ntv.esterror = (user32_long_t)time_esterror; |
| 495 | user_ntv.status = time_status; |
| 496 | user_ntv.constant = (user32_long_t)time_constant; |
| 497 | if (time_status & STA_NANO) { |
| 498 | user_ntv.precision = (user32_long_t)time_precision; |
| 499 | } else { |
| 500 | user_ntv.precision = (user32_long_t)(time_precision / 1000); |
| 501 | } |
| 502 | user_ntv.tolerance = MAXFREQ * SCALE_PPM; |
| 503 | |
| 504 | /* unlock before copyout */ |
| 505 | NTP_UNLOCK(enable); |
| 506 | |
| 507 | error = copyout(&user_ntv, uap->tp, sizeof(user_ntv)); |
| 508 | } |
| 509 | |
| 510 | if (modes) { |
| 511 | start_ntp_loop(); |
| 512 | } |
| 513 | |
| 514 | if (error == 0) { |
| 515 | *retval = ret; |
| 516 | } |
| 517 | |
| 518 | return error; |
| 519 | } |
| 520 | |
| 521 | int64_t |
| 522 | ntp_get_freq(void) |
| 523 | { |
| 524 | return time_freq; |
| 525 | } |
| 526 | |
| 527 | /* |
| 528 | * Compute the adjustment to add to the next second. |
| 529 | */ |
| 530 | void |
| 531 | ntp_update_second(int64_t *adjustment, clock_sec_t secs) |
| 532 | { |
| 533 | int tickrate; |
| 534 | l_fp time_adj; |
| 535 | l_fp ftemp, old_time_adjtime, old_offset; |
| 536 | |
| 537 | NTP_ASSERT_LOCKED(); |
| 538 | |
| 539 | if (secs > last_time_maxerror_update) { |
| 540 | time_maxerror += (MAXFREQ / 1000) * (secs - last_time_maxerror_update); |
| 541 | last_time_maxerror_update = secs; |
| 542 | } |
| 543 | |
| 544 | old_offset = time_offset; |
| 545 | old_time_adjtime = time_adjtime; |
| 546 | |
| 547 | ftemp = time_offset; |
| 548 | L_RSHIFT(ftemp, SHIFT_PLL + time_constant); |
| 549 | time_adj = ftemp; |
| 550 | L_SUB(time_offset, ftemp); |
| 551 | L_ADD(time_adj, time_freq); |
| 552 | |
| 553 | /* |
| 554 | * Apply any correction from adjtime. If more than one second |
| 555 | * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM) |
| 556 | * until the last second is slewed the final < 500 usecs. |
| 557 | */ |
| 558 | if (time_adjtime != 0) { |
| 559 | if (time_adjtime > 1000000) { |
| 560 | tickrate = 5000; |
| 561 | } else if (time_adjtime < -1000000) { |
| 562 | tickrate = -5000; |
| 563 | } else if (time_adjtime > 500) { |
| 564 | tickrate = 500; |
| 565 | } else if (time_adjtime < -500) { |
| 566 | tickrate = -500; |
| 567 | } else { |
| 568 | tickrate = (int)time_adjtime; |
| 569 | } |
| 570 | time_adjtime -= tickrate; |
| 571 | L_LINT(ftemp, tickrate * 1000); |
| 572 | L_ADD(time_adj, ftemp); |
| 573 | } |
| 574 | |
| 575 | if (old_time_adjtime || ((time_offset || old_offset) && (time_offset != old_offset))) { |
| 576 | updated = 1; |
| 577 | } else { |
| 578 | updated = 0; |
| 579 | } |
| 580 | |
| 581 | #if DEVELOPMENT || DEBUG |
| 582 | if (g_should_log_clock_adjustments) { |
| 583 | int64_t nano = (time_adj > 0)? time_adj >> 32 : -((-time_adj) >> 32); |
| 584 | int64_t frac = (time_adj > 0)? ((uint32_t) time_adj) : -((uint32_t) (-time_adj)); |
| 585 | |
| 586 | os_log(OS_LOG_DEFAULT, "%s:AFTER offset %lld (%lld) freq %lld status %d " |
| 587 | "constant %ld time_adjtime %lld nano %lld frac %lld adj %lld\n" , |
| 588 | __func__, time_offset, (time_offset > 0)? time_offset >> 32 : -((-time_offset) >> 32), |
| 589 | time_freq, time_status, time_constant, time_adjtime, nano, frac, time_adj); |
| 590 | } |
| 591 | #endif |
| 592 | |
| 593 | *adjustment = time_adj; |
| 594 | } |
| 595 | |
| 596 | /* |
| 597 | * hardupdate() - local clock update |
| 598 | * |
| 599 | * This routine is called by ntp_adjtime() when an offset is provided |
| 600 | * to update the local clock phase and frequency. |
| 601 | * The implementation is of an adaptive-parameter, hybrid |
| 602 | * phase/frequency-lock loop (PLL/FLL). The routine computes new |
| 603 | * time and frequency offset estimates for each call. |
| 604 | * Presumably, calls to ntp_adjtime() occur only when the caller |
| 605 | * believes the local clock is valid within some bound (+-128 ms with |
| 606 | * NTP). |
| 607 | * |
| 608 | * For uncompensated quartz crystal oscillators and nominal update |
| 609 | * intervals less than 256 s, operation should be in phase-lock mode, |
| 610 | * where the loop is disciplined to phase. For update intervals greater |
| 611 | * than 1024 s, operation should be in frequency-lock mode, where the |
| 612 | * loop is disciplined to frequency. Between 256 s and 1024 s, the mode |
| 613 | * is selected by the STA_MODE status bit. |
| 614 | */ |
| 615 | static void |
| 616 | hardupdate(long offset) |
| 617 | { |
| 618 | long mtemp = 0; |
| 619 | long time_monitor; |
| 620 | clock_sec_t time_uptime; |
| 621 | l_fp ftemp; |
| 622 | |
| 623 | NTP_ASSERT_LOCKED(); |
| 624 | |
| 625 | if (!(time_status & STA_PLL)) { |
| 626 | return; |
| 627 | } |
| 628 | |
| 629 | if (offset > MAXPHASE) { |
| 630 | time_monitor = MAXPHASE; |
| 631 | } else if (offset < -MAXPHASE) { |
| 632 | time_monitor = -MAXPHASE; |
| 633 | } else { |
| 634 | time_monitor = offset; |
| 635 | } |
| 636 | L_LINT(time_offset, time_monitor); |
| 637 | |
| 638 | clock_get_calendar_uptime(secs: &time_uptime); |
| 639 | |
| 640 | if (time_status & STA_FREQHOLD || time_reftime == 0) { |
| 641 | time_reftime = time_uptime; |
| 642 | } |
| 643 | |
| 644 | mtemp = time_uptime - time_reftime; |
| 645 | L_LINT(ftemp, time_monitor); |
| 646 | L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1); |
| 647 | L_MPY(ftemp, mtemp); |
| 648 | L_ADD(time_freq, ftemp); |
| 649 | time_status &= ~STA_MODE; |
| 650 | if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > |
| 651 | MAXSEC)) { |
| 652 | if (time_monitor > 0) { |
| 653 | L_LINT(ftemp, (time_monitor << 4) / mtemp); |
| 654 | } else { |
| 655 | L_LINT(ftemp, -((int64_t)(-(time_monitor)) << 4) / mtemp); |
| 656 | } |
| 657 | L_RSHIFT(ftemp, SHIFT_FLL + 4); |
| 658 | L_ADD(time_freq, ftemp); |
| 659 | time_status |= STA_MODE; |
| 660 | } |
| 661 | time_reftime = time_uptime; |
| 662 | |
| 663 | if (L_GINT(time_freq) > MAXFREQ) { |
| 664 | L_LINT(time_freq, MAXFREQ); |
| 665 | } else if (L_GINT(time_freq) < -MAXFREQ) { |
| 666 | L_LINT(time_freq, -MAXFREQ); |
| 667 | } |
| 668 | } |
| 669 | |
| 670 | |
| 671 | static int |
| 672 | kern_adjtime(struct timeval *delta) |
| 673 | { |
| 674 | struct timeval atv; |
| 675 | int64_t ltr, ltw; |
| 676 | boolean_t enable; |
| 677 | |
| 678 | if (delta == NULL) { |
| 679 | return EINVAL; |
| 680 | } |
| 681 | |
| 682 | ltw = (int64_t)delta->tv_sec * (int64_t)USEC_PER_SEC + delta->tv_usec; |
| 683 | |
| 684 | NTP_LOCK(enable); |
| 685 | ltr = time_adjtime; |
| 686 | time_adjtime = ltw; |
| 687 | #if DEVELOPMENT || DEBUG |
| 688 | if (g_should_log_clock_adjustments) { |
| 689 | os_log(OS_LOG_DEFAULT, "%s:AFTER offset %lld freq %lld status %d constant %ld time_adjtime %lld\n" , |
| 690 | __func__, time_offset, time_freq, time_status, time_constant, time_adjtime); |
| 691 | } |
| 692 | #endif |
| 693 | NTP_UNLOCK(enable); |
| 694 | |
| 695 | atv.tv_sec = (__darwin_time_t)(ltr / (int64_t)USEC_PER_SEC); |
| 696 | atv.tv_usec = ltr % (int64_t)USEC_PER_SEC; |
| 697 | if (atv.tv_usec < 0) { |
| 698 | atv.tv_usec += (suseconds_t)USEC_PER_SEC; |
| 699 | atv.tv_sec--; |
| 700 | } |
| 701 | |
| 702 | *delta = atv; |
| 703 | |
| 704 | start_ntp_loop(); |
| 705 | |
| 706 | return 0; |
| 707 | } |
| 708 | |
| 709 | int |
| 710 | adjtime(struct proc *p, struct adjtime_args *uap, __unused int32_t *retval) |
| 711 | { |
| 712 | struct timeval atv; |
| 713 | int error; |
| 714 | |
| 715 | /* Check that this task is entitled to set the time or it is root */ |
| 716 | if (!IOCurrentTaskHasEntitlement(SETTIME_ENTITLEMENT)) { |
| 717 | #if CONFIG_MACF |
| 718 | error = mac_system_check_settime(cred: kauth_cred_get()); |
| 719 | if (error) { |
| 720 | return error; |
| 721 | } |
| 722 | #endif |
| 723 | if ((error = priv_check_cred(cred: kauth_cred_get(), PRIV_ADJTIME, flags: 0))) { |
| 724 | return error; |
| 725 | } |
| 726 | } |
| 727 | |
| 728 | if (IS_64BIT_PROCESS(p)) { |
| 729 | struct user64_timeval user_atv; |
| 730 | error = copyin(uap->delta, &user_atv, sizeof(user_atv)); |
| 731 | atv.tv_sec = (__darwin_time_t)user_atv.tv_sec; |
| 732 | atv.tv_usec = user_atv.tv_usec; |
| 733 | } else { |
| 734 | struct user32_timeval user_atv; |
| 735 | error = copyin(uap->delta, &user_atv, sizeof(user_atv)); |
| 736 | atv.tv_sec = user_atv.tv_sec; |
| 737 | atv.tv_usec = user_atv.tv_usec; |
| 738 | } |
| 739 | if (error) { |
| 740 | return error; |
| 741 | } |
| 742 | |
| 743 | kern_adjtime(delta: &atv); |
| 744 | |
| 745 | if (uap->olddelta) { |
| 746 | if (IS_64BIT_PROCESS(p)) { |
| 747 | struct user64_timeval user_atv = {}; |
| 748 | user_atv.tv_sec = atv.tv_sec; |
| 749 | user_atv.tv_usec = atv.tv_usec; |
| 750 | error = copyout(&user_atv, uap->olddelta, sizeof(user_atv)); |
| 751 | } else { |
| 752 | struct user32_timeval user_atv = {}; |
| 753 | user_atv.tv_sec = (user32_time_t)atv.tv_sec; |
| 754 | user_atv.tv_usec = atv.tv_usec; |
| 755 | error = copyout(&user_atv, uap->olddelta, sizeof(user_atv)); |
| 756 | } |
| 757 | } |
| 758 | |
| 759 | return error; |
| 760 | } |
| 761 | |
| 762 | static void |
| 763 | ntp_loop_update_call(void) |
| 764 | { |
| 765 | boolean_t enable; |
| 766 | |
| 767 | NTP_LOCK(enable); |
| 768 | |
| 769 | /* |
| 770 | * Update the scale factor used by clock_calend. |
| 771 | * NOTE: clock_update_calendar will call ntp_update_second to compute the next adjustment. |
| 772 | */ |
| 773 | clock_update_calendar(); |
| 774 | |
| 775 | refresh_ntp_loop(); |
| 776 | |
| 777 | NTP_UNLOCK(enable); |
| 778 | } |
| 779 | |
| 780 | static void |
| 781 | refresh_ntp_loop(void) |
| 782 | { |
| 783 | NTP_ASSERT_LOCKED(); |
| 784 | if (--ntp_loop_active == 0) { |
| 785 | /* |
| 786 | * Activate the timer only if the next second adjustment might change. |
| 787 | * ntp_update_second checks it and sets updated accordingly. |
| 788 | */ |
| 789 | if (updated) { |
| 790 | clock_deadline_for_periodic_event(interval: ntp_loop_period, abstime: mach_absolute_time(), deadline: &ntp_loop_deadline); |
| 791 | |
| 792 | if (!timer_call_enter(call: &ntp_loop_update, deadline: ntp_loop_deadline, TIMER_CALL_SYS_CRITICAL)) { |
| 793 | ntp_loop_active++; |
| 794 | } |
| 795 | } |
| 796 | } |
| 797 | } |
| 798 | |
| 799 | /* |
| 800 | * This function triggers a timer that each second will calculate the adjustment to |
| 801 | * provide to clock_calendar to scale the time (used by gettimeofday-family syscalls). |
| 802 | * The periodic timer will stop when the adjustment will reach a stable value. |
| 803 | */ |
| 804 | static void |
| 805 | start_ntp_loop(void) |
| 806 | { |
| 807 | boolean_t enable; |
| 808 | |
| 809 | NTP_LOCK(enable); |
| 810 | |
| 811 | ntp_loop_deadline = mach_absolute_time() + ntp_loop_period; |
| 812 | |
| 813 | if (!timer_call_enter(call: &ntp_loop_update, deadline: ntp_loop_deadline, TIMER_CALL_SYS_CRITICAL)) { |
| 814 | ntp_loop_active++; |
| 815 | } |
| 816 | |
| 817 | NTP_UNLOCK(enable); |
| 818 | } |
| 819 | |
| 820 | |
| 821 | static void |
| 822 | init_ntp_loop(void) |
| 823 | { |
| 824 | uint64_t abstime; |
| 825 | |
| 826 | ntp_loop_active = 0; |
| 827 | nanoseconds_to_absolutetime(NTP_LOOP_PERIOD_INTERVAL, result: &abstime); |
| 828 | ntp_loop_period = (uint32_t)abstime; |
| 829 | timer_call_setup(call: &ntp_loop_update, func: (timer_call_func_t)ntp_loop_update_call, NULL); |
| 830 | } |
| 831 | |
| 832 | void |
| 833 | ntp_init(void) |
| 834 | { |
| 835 | init_ntp_loop(); |
| 836 | } |
| 837 | |